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Abstract— Unmanned Aerial Vehicles (UAVs) commonly
called drones are gaining interest for infrastructure inspection
due to their ability to automize and monitor large areas more
securely at a lower cost. Autonomous inspection and path
planning are essential capabilities for the drone’s autonomous
flight. In this paper, we propose a novel inspection path planning
method for achieving a complete and efficient inspection using
drones. A point cloud generated from a 3D mapping service is
used to represent complex inspection targets and provided as
the input of the path planning method. The method is designed
as a sampling-based sequential optimization to calculate and
optimize an inspection path while considering the limitation of
the sensors, inspection efficiency, and safety requirements of the
drones. The proposed method is evaluated for both the use case
of bridge inspection and power pylon inspection. A comparison
between the proposed path search algorithm and TSP solver
is made. Furthermore, the scalability of the method is assessed
with different sizes of the inspection problem.

I. INTRODUCTION

Drones have been widely adopted by infrastructure oper-
ators for some of the maintenance tasks, such as power line,
highways, railways, and bridge inspections [1][2]. However,
due to limitation of the current autonomous drone technology
[3], a large number of standard inspection tasks are still
labor-intensive, time-consuming, and sometimes even dan-
gerous. To efficiently maintain safety for a large number
of infrastructures, it motivates researchers to continuously
improve and automate the data processing steps with drones.
Today, many of the infrastructures have been digitized as
geometric models with detailed structure information [4].
Some of the 3D reconstruction technologies [5][6] also
provide quick mapping methods to acquire structure infor-
mation using drones. Therefore, infrastructure operators are
often interested in keeping their data up to date with the
condition changes of the infrastructures (e.g. rust, abrasion,
and degradation) and surrounding environment, or enriching
their data by involving more advanced sensors to inspect
from different perspectives.

We focus on the problem of path planning for inspect-
ing infrastructures using autonomous drones. Our proposed
method assumes the structure of the inspection target is
provided as a dense 3D point cloud, which is a common
format of the 3D reconstruction result. It requires to solve a
coverage planning problem [7] to fully visit the inspection
target and subject to different constraints from the vehicle
and inspection sensors. Similar to [8], the proposed solution
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aims to provide a complete, safe, and efficient path guidance
for drones. Our contributions are as follows:

• We propose a fast, and efficient inspection path planning
processing chain via segmented voxel sampling, traver-
sal path search, and sequential convex optimization.
Different from existing practices, a combination of
segmentation, voxelization and sampling is used for
representing the structure of any general inspection
target. A new traversal path search algorithm and a
path optimization model are optimized towards low
computation complexity.

• We demonstrate the utility of the path planning method
for bridge inspections and power pylon inspections.
We analyze the computation characteristics and show
that the proposed algorithm exhibits linear scalability
regarding the computation time and the size of the
inspection target.

The paper unfolds as follows. Section II summarizes
the background of the inspection path planning and 3D
data processing. Section III formulates the inspection path
planning problem. Subsequently, Section IV introduces the
processing chain for inspection path planning and the use
cases for bridge inspection, and power pylon inspection.
The computation characteristics are analyzed in Section V.
Conclusions are summarized in Section VI.

II. RELATED WORK

There is a good body of research regarding the drone
inspection path planning. In [9], the authors analyzed the
most successful UAV 3D path planning algorithms that
developed in recent years. Path planning methods have
been classified into several categories such as node-based
algorithms and mathematical model-based algorithms. An
important section of the mathematical model-based method
is formulated as an optimization problem. To model the
constraints and the objective function for path optimization,
the authors in [10] discussed the quadrotor dynamics and
smooth trajectory generation. To maintain safety, the concept
of a safety-distance and collision avoidance was investigated
and modeled in [11]. To provide good initial values for the
optimization calculation, sampling-based path planning and
path-guided trajectory optimization methods were proposed
[12], [13]. They present a two-step path planner, of which the
results of the sampling-based path planning are formulated
either as initial values or constraints of the optimization
model in the trajectory optimization method. Therefore, the
optimization process is benefited from the sampling-based
path planning to resist errors caused by the local optimal,



and to fulfill extra path requirements by involving new
constraints.

Coverage Path Planning (CPP) is the problem of deter-
mining a path that covers all parts of an area or volume
of interest. Such as inspection applications are often mod-
eled as CPP problems [14][15]. A survey of the coverage
path planning methods can be found in [16]. In the CPP
problem, the targeting area of interest is represented and
decomposed as polygons [17], grids [18], or graphs [19].
To achieve a complete coverage on the represented area,
a path for the mobile robots or vehicles can be calculated
based on different algorithms, including Boustrophedon and
Trapezoidal algorithms for polygonal planar space [20], [21],
Wavefront for grid space [22], and graph search algorithms
[23]. However, most algorithms are designed for 2D en-
vironments. To address the complex 3D structures, a two-
step optimization scheme was proposed to find close to
the optimal path by iteratively solving Art Gallery Problem
(AGP)[24] and Traveling Salesman Problem (TSP) [8],[25].
Although the result of AGP benefits to shorten total travel-
distance, the smoothness of the path is hard to be optimized.
The scalability of the solution is also limited by the NP-hard
time complexity of TSP [26].

Our proposed inspection path planning method retains
a two-step scheme. However, the order of the two-step is
changed. Besides, the TSP step is replaced by a new traversal
path searching with smoothness and scalability considered.
The AGP step is replaced by sequential convex optimization.
This is driven by the consideration that a simple and smooth
path is more critical for the autonomous flight regarding the
safety. Many inspection tasks expect a detailed examination
of the target. In this regard, the advantage of solving AGP
is limited. The first step is to maintain complete coverage
of the inspection target. Then the second step is to generate
a feasible flight path and to optimize the path in terms of
safety and efficiency.

III. PROBLEM FORMULATION

The problem of inspection path planning is to find an
efficient path that guides autonomous systems to inspect
the region of interest with onboard sensors. In this paper,
the rotor-based drone, as the autonomous system is mainly
investigated. The inspection target, e.g. a bridge represented
by point cloud, is assumed to be provided. However, to
fit in a practical situation, the noise and uncertainty in the
point cloud dataset generated from the 3D mapping service
need to be addressed. Besides, the limitations of the onboard
inspection sensors, the dynamic constraints of the drone are
considered. An inspection is defined as a sequence of actions
taken by the rotor-based drone that uses the onboard sensor
such as a camera, to sense an area of the inspection target.
The inspection path is defined as sequentially connected
waypoints, which indicates the position of the drone and
the sensor to fulfill the inspection task. The efficiency of
the path is measured as the path length and the number of
the direction changes. Therefore the problem is formulated as
finding an efficient path with the constraints from the system,

which guarantees a complete visibility of the inspection
target represented as a point cloud. The solution to the
coverage problem was calculated before the operation to
provide a guidance plan for the system and used with an
onboard motion planner for unforeseen circumstances during
the mission.

IV. METHODOLOGY

This section explores a data preprocessing pipeline for
inspection path planning. As shown in Fig. 1, the data
processing chain consists of three modules described in
the subsections IV-A, IV-B, and IV-C. Our proposed path
search method reads a point cloud set, e.g. PLY file, as
input and exports a sequence of waypoints with related
sensor orientations, e.g. camera angles. Step 1 works on data
cleaning, normal vector estimation, and downsampling. Step
2 generates a graph based on downsampled data and then
searches a feasible traversal path for the graph. Based on the
traversal path and the normal vectors, Step 3 constructs the
optimization problem to find and optimize the flight way-
points and sensor orientations.

Cleaning, 
Normal estimation,
Downsampling

Graph generation,
Path search

Path optimization

Point cloud
Waypoints with
sensor orientations

1 2 3

Fig. 1: Overview of the data processing steps.

A. Cleaning, Normal Estimation, and Downsampling

To represent the structure of complex 3D objects, e.g.
buildings and bridges, reconstructing 3D scenes from 2D
images is widely researched in computer vision as a structure
From Motion (SFM) problem [27], [28]. Given the result of
the 3D reconstruction, point cloud, the surface of the 3D
object is simplified as a triangle mesh in [8]. However, the
noise in the point may often jeopardize the quality of the
triangle mesh surface representation, e.g. existing of many
mesh holes, and overlapping triangles. A convex hull method
is a way to simplify the surface. It has been adopted in many
collision-free path planers [29], motivated by the features of
the convexity, especially its low computation complexity.

In this work, we use voxel decomposition and sampling
to simplify the surface of the inspection target to circumvent
the uncertainty of triangle mesh generation. The point cloud
of a bridge located in Villalvernia, Italy is used as illustrated
in Fig. 2a. First, we select the area that requires inspection
and crop out the relevant point cloud. To visualize and
analyze our data, we are using the tool CloudCompare1

for point cloud cropping. Fig. 2b shows the result of the
cropping step. As shown, there is a lot of noise and outliers,
which jeopardize the quality of the next step e.g. normal
vector estimation. Therefore, some data cleaning steps are

1Available as an open-source tool at https://www.danielgm.net/
cc/
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Fig. 2: (a) A point cloud (PLY file) is generated by the
3D mapping service. (b) The inspection area is selected and
cropped. (c) The point cloud is cleaned and smoothed. The
smoothness is represented by the difference in color.

completed. Obvious outliers are removed using the segment
function in CloudCompare. Then an MLS (Moving Least
Squares) smoothing is performed. Fig. 2c visualizes the
output of the data cleaning step.

The Open3D library2 is used for the point cloud processing
including normal estimation, sampling, and visualization.
The normal vector of each point is estimated and then
oriented by using constructed tangent plane according to
nearby points. To simplify the tangent plane construction,
a voxel-based downsampling with a small voxel size (10
cm) is conducted beforehand. A point cloud with correctly
estimated normal vectors is shown in Fig. 3a. Subsequently
we reuse the voxel downsampling method to segment and
discretize the surface of the inspection target. A larger voxel
size parameter, 150 cm, is adopted. Each voxel represents an
inspection area that can be scanned by a single trigger of the
inspection sensor. It is designed to scan the voxel one by one.
To acquire quality inspection, the voxel size is constrained
by the maximal inspection distance and the field of view of
the sensor. As the output of the first step, Fig. 3b presents the
downsampled point cloud with normal vectors. In the next
subsection, we introduce a graph generation and a graph-
based path searching algorithm using the downsampled point
cloud.

B. Graph Generation and Path Search

The drone flight becomes efficient when the guided path is
simple, e.g. a path that avoids repeating trajectories or direc-

2Python package available at http://www.open3d.org/docs/
release/
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Fig. 3: (a) A normal vector of each point is estimated and
oriented perpendicular to the consistent tangent plane. (b)
The point cloud with its normal vectors is downsampled
using voxelization.

tional changes. It enhances the safety to leave more margin
to react to unexpected situations in the field. However, a
path search, e.g. finding the shortest traversal path from a
graph representation of an inspection target, often leads to
complex results. To control the complexity of the path search,
a segmentation step is involved, as described in Algorithm 1.
np denotes the normal vector of the point. nf denotes the
facet normal vector of the bounding box. The point cloud
is segmented into 6 clusters based on the normal vectors of
the 6 facets of the oriented bounding box, (Fig. 4a). Fig. 4b
represents an example of a segmented point cluster of which
the point normal vectors are close to the normal vector of
the top facet of the bounding box.

Algorithm 1: A point cloud segmentation
Input: A point cloud with normal vectors
Output: A set of segmented point clouds

1 Function Segmentation:
2 Get bounding box around the object
3 Calculate facet normal vectors (nf ) of the

bounding box
4 for Point in Point cloud do
5 n∗f = argmax

nf

dot(np, nf )

6 Segment into point cluster based on n∗f
7 end
8 return

A directed graph is generated based on the downsampled
point cloud. The NetworkX library [30] is used for graph
storage. Each point corresponds to a node in the graph
with related attributes, e.g. position and visiting status. The
directed edges of the graph represent the feasible paths from
the current point to the next point. Edges are added by
connecting a predefined number of neighboring points. The
cost for selecting the edge as part of the path is calculated
and stored as an attribute in each edge object defined in
NetworkX. The cost function is formulated to push the
path search to gradually explore the inspection areas while
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Fig. 4: (a) The point cloud is clustered based on the normal
vectors shown with orange arrows, of the oriented bounding
box in blue. The axis-aligned bounding box is shown in
yellow with a local coordinate system visualized in the
bottom right corner. (b) A cluster of the points that represents
the top part of the bridge. (c) A graph is generated based
on the point cluster in (b). (d) A graph generated from a
different point cluster contains two components, i.e., two
induced subgraphs in which any two vertices are connected
to each other by paths.

evenly spreading from the initial position. The cost function
considers both the distance from the last node and the
distance from the start node, Eq. (1).

cost = dist(a, an) + dist(0, an) (1)

where the an denotes a neighboring node of a. The function
dist() calculates the Euclidian distance between two nodes.
The node 0 denotes a predefined starting node for path
search. The cost function Fig. 4c presents a generated graph
based on the point cloud shown in Fig. 4b.

A traversal path search algorithm is developed (Algo-
rithm 2) to efficiently search a path that represents the
sequence of inspection actions for a complete inspection.
Algorithm 2 reads the generated graph and a predefined start
node as input and outputs a traversal path. The traversal path
is a list of node indexes. The start node is determined by
finding the closest node to the initial take-off position of
the drone or the position of the drone at the end of the last
mission. Due to the segmentation step, the graph is not guar-
anteed to be a connected graph, as evident from Fig. 4d. To
achieve traversal across multiple components (unconnected
graphs), Check unvisited node() enables jumps between
components. The function Get next node() searches the

Algorithm 2: Traversal path search
Input: start node, graph
Output: traversal path

1 Function Get next node(current node, graph):
2 Find neighbors of current node in graph
3 if unvisited neighbors ≥ 1 then
4 Read edge cost of unvisited neighbors
5 return neighbor with minimum edge cost
6 else
7 return closest unvisited node or None =

Breadth first search(current node, graph)
8 end
9 Function Main:

10 current node = start node
11 traversal path = [start node]
12 while node != None do
13 node = Get next node(current node, graph)
14 if node != None then
15 traversal path.append(node)
16 else
17 node = Check unvisited nodes(graph)
18 if node != None then
19 Check visiting status of neighbors
20 if neighbor is visited then
21 traversal path.insert(node) after the

neighbor index
22 else
23 traversal path.append(node)
24 end
25 else
26 Break
27 end
28 end
29 node’s visiting status = visited
30 current node = node
31 end
32 return traversal path

best next node based on the current node, the costs of
edges to the neighboring nodes as defined in Eq. (1), and
the visiting status of the neighboring nodes. Each node
is designed to be visited only once. The edge with the
lowest cost is selected. The standard Breadth first search
method provided by the NetworkX library [30] is involved to
enable jumps between nodes that are not directly connected
by an edge.

By searching paths for 6 clusters of the segmented point
cloud based on the generated graphs, the inspection se-
quences for 6 clusters are calculated. As the output of
the second step, Fig. 5 presents the segmented cloud point
(6 clusters), normal vectors, and the traversal path, which
guaranteed a complete visit of all points. Each point cluster
is visualized with the axis-aligned bounding box. The axis
represents the local coordinate system.
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Fig. 5: An efficient path, shown in red, is searched to fully
visit all points in each point cluster of the bridge, which is
generated based on normal vectors representing 6 different
directions. The green sphere, in the top left corner, denotes
the start point of the path search.

C. Path Optimization

The path optimization step converts the inspection se-
quence (traversal path) to an efficient flight path while
considering safety constraints, and sensor limitations. The
flight path is optimized in terms of the flight distance and
the path smoothness. The path optimization is constructed as
a sequential convex optimization by combining point cloud
data, normal vectors and the traversal path:

min
∆j

J∑
j=1

∥∥∆j

∥∥
2

+ β

J−1∑
j=1

∥∥∆x,y
j+1 − ∆x,y

j

∥∥
2

+ µ

J−1∑
j=1

∥∥∆z
j+1 − ∆z

j

∥∥
2

(2)
s.t. g1 = Pstart + ∆1

gj+1 = gj + ∆j+1, ∀j ∈ {1, 2, ..., J − 1}
(gj − vj1)Tnj ≥ dmin

−(gj − vj1)Tnj ≥ −dmax

(gj − vji)Thji ≥ 0, ∀i ∈ {1, 2, 3, 4}
(3)

where ∆j = [∆x
j ,∆

y
j ,∆

z
j ] denotes the position control vari-

able in 3D space. ∆x,y
j denotes the x and y-axis components

of ∆j . ∆z
j denotes its z-axis component. β and µ are constant

values that represent the scalar of the constructed cost
function. Pstart indicates the start position of the inspection
task. gj = [gxj , g

y
j , g

z
j ] denotes the position of jth viewpoint,

where the inspection sensor, e.g. the camera, is triggered to
sense an area defined based on the jth sampled point in the
point cloud. The number of sampled points is J . An efficient
traversal sequence of the sampled points is calculated at the
path searching step. Eq. (2) describes the objective function
for the path optimization, which minimizes the total path
length and the change of the consecutive position control
variable at the x, y, and z-axis. We select β = 1 and µ = 10
to punish more for the difference generated from the z-axis,
i.e., the altitude of the drone. Eq. (3) defines the constraints.
It begins with equality constraints, defining the initial value
and the update function for the calculation of viewpoint g.
Then the inequality constraints represent the incidence angle
limitations, the safety minimal distance, and the maximal
inspection distance. Inequality constraints are visualized in
Fig. 6, where the incidence angle limitations are constructed
by the inner product between the vector (gj − vji) and the
normal vector hji of the hyperplanes. The hyperplane is
defined by the incidence angle and the edge of the square
constructed perpendicular to the normal vector n of the point
p. The orientation of the sensor for each inspection area is
defined by g and p, where the sensor is placed at the position
of g and oriented towards the position of p, i.e., the sensor
orientation is settled by the vector (p− g).

A Python-embedded modeling language, CVXPY [31], is
used for modeling the sequential convex optimization prob-
lem. The embedded conic solver (ECOS) [32], an interior-
point solver, is mainly used for calculating the optimal result.
Fig. 7 presents the result of the path optimization, where the
incidence angle limitation is set to 30 degrees, the minimal
safety distance and the maximal inspection distance (dmin

and dmax) are set to 1 and 2.5 meters, respectively.

D. Deployment

It is recommended to deploy the proposed processing steps
on a cloud computing platform, which provides sufficient
computation power for path search, path optimization, as
well as point cloud visualization, especially for large-scale
inspection tasks. Cloud deployment also leads to convenient
integration with the 3D mapping service, e.g. webODM,
which provides input data for the processing chain. The
processing chain is designed to provide path guidance for
the inspection task. It is sufficient to generate the path before
the task stated and then send the path data to autonomous
drones as global guidance. The drone is expected to have
an on-board local path planner for waypoints following and
obstacle avoidance to respond to unexpected turns of events
during the inspection.
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Fig. 6: A convex constraint space is constructed. p is a
point in the downsampled point cloud. n is its estimated
normalized normal vector. Marks vi, i ∈ {1, 2, 3, 4} denote
the vertices of the constructed square, of which the center
is the position of p, the length is defined by the voxel size
in the voxel downsampling step. Vectors hi, i ∈ {1, 2, 3, 4}
represent the normalized normal vectors of the hyperplanes,
which are constructed based on edges of the square and the
incidence angle constraint, e.g. h1. Two hyperplanes in green
and red parallel to the square are constructed at the side
defined by the normal vector n and the distance defined by
dmin and dmax. The star g denotes the viewpoint, of which
the position is to be optimized subject to the constraints

V. EVALUATION

To address the challenge of open structures, we introduce
a new inspection case with an open structure by considering
the metal frame of a power pylon. For this case, the computa-
tion demand of the proposed steps for different scales of the
problem are presented. Furthermore, the proposed traversal
path search algorithm is compared with the basic greedy TSP
solver in terms of the computation time and the path results.

A. Power Pylon Case Study

We evaluate the proposed inspection path planning method
by using the power pylon as a case study. Different from the
bridge, which mainly consists of a solid structure, the power
pylon is designed as a metal frame structure, of which the
inner structures become visible. Therefore the point cloud
generated by the 3D mapping service shows both the outer
surface and the visible inner structures, which leads to the
difficulty to estimate the normal vectors by constructing
tangent planes using neighboring points. However, to avoid
collisions during the inspection, it is critical to correctly
model the convex constraint space (Fig. 8), which requires

(top & bottom)

(front & back)

Fig. 7: The bridge is represented as a triangle mesh in yellow.
Red lines indicate the result of the path search. Optimized
inspection paths for the bottom-side, front-side, back-side,
and front-side of the bridge are presented in blue.

accurate extraction of surface points and estimate their nor-
mal vector directions.

To ensure the safety of the flight path, the convex hull is
extracted from the point cloud to represent the surface of
the inspection target with the frame structure. The convex
hull is the smallest convex polygon that contains all the
points. Fig. 8b visualizes the convex hull of a power pylon
Fig.8a. With subdivision, a triangle mesh model representing
the convex hull is generated, Fig. 8c. Afterward, points
are sampled from the mesh with a predefined surface-point
density. At this stage, the data is ready to connect to the
inspection path planning method introduced in Section IV.

Fig. 8: (a) The power pylon point cloud. (b) A convex hull
representation of the power pylon. (c) A triangle mesh model
of the convex hull generated with subdivision.

Fig. 9 shows the result of power pylon inspection
path planning using the proposed inspection path planning
method. The size of the power pylon is approximately
4.5x4.2x20.2 meters. The voxel size for the voxel downsam-
pling is set to 1 meter. The minimal safety distance is defined
as 1 meter, while the maximal inspection distance is defined
as 2.5 meters. The incidence angle limitation of the sensor is
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Fig. 9: Inspection path plan for a power pylon. (a) Sampling
and normal vector estimation. Each sampled point locates in
the center of a 1x1 meter inspection area. (b) Decomposition
and graph generation. Components representing the left and
right sides of the power pylon are visualized. (c) Path
searching. Green spheres represent the starting inspection
area from the left and right sides of the power pylon. (d)
Optimized inspection paths are visualized in blue.

set to 30 degrees. We set β = 1 and µ = 10 for the Eq. (2),
the objective function for the path optimization.

B. Computation Analysis

A computation analysis is presented to provide an
overview of the time consumption of the proposed method.
The evaluation of the computation uses Intel i7-8650 CPU
as the platform. Fig. 10 presents the time consumption of
the path searching and the path optimization for processing
different sections of the bridge. As introduced in Fig. 5, the
bridge point cloud was segmented into 6 point clusters. The
point cluster with more points needs a longer computation
time. In the path optimization step, the computation time
also depends on the speed of the solver. The total time
consumption of the proposed method is presented in Fig. 11.
The time consumption shows a linear increase with the
sampling points. The total number of sampled points depends
on the voxel size, a parameter for the voxel downsampling.
As shown in figure 11, the majority of the time consumption
is used for processing path optimization. Normal estimation,
graph generation, and decomposition are the subsequent
steps that are time-consuming.

To evaluate the scalability of the method, we measured
the computation time of the path optimization for 5 different
sizes of the problem, 20 measurements for each problem.
Modeled as a sequential convex optimization, Eq. (2) and
(3), the proposed optimization algorithm has O(n) time com-
plexity. It is observed in Fig. 12, a linear relation between the
computation time of the path optimization and the number
of sampled points (J in Eq. (3)), reflecting the size of the
problem. The number of sampled points is influenced by the
voxel size parameter required by voxel downsampling step.

Fig. 10: Computation time of the path optimization and path
search for different decomposed point clusters.

Fig. 11: The total computation time of the proposed method
in terms of the voxel size. The number of the sampled
points using voxel downsampling is given. The time con-
sumption of different steps is provided individually to show
the distribution. The red section (Others) includes steps of
voxel downsampling, bounding box calculation, and path
searching.

C. Comparison of TSP with our Path Search Method

This section evaluates the proposed path searching algo-
rithm. The scalability and the result of the path searching
are discussed. As the path is required to be a traversal,
Fig. 13 shows a comparison of time consumption between the
proposed method and the basic greedy Traveling Salesman
Problem (TSP) solver [33], which provides a pure Python
code for searching sub-optimal solutions to the TSP. As
shown in this figure, the proposed method costs less time
than the TSP solver. In the case that the problem size
increases approx. 3 times, from 262 points to 770 points, the



Fig. 12: Computation time of the proposed path optimization
algorithm. The labels below the scatter plot points indicate
the number of sampled points. A linear regression yields a
R2 value of 0.9945.

Fig. 13: Comparison between the proposed path search
algorithm and the basic greedy Traveling Salesman Problem
(TSP) solver. In the case of voxel size as 1.5 meters, the
bottom side point cluster contains 262 points and the topside
cluster contains 261 points. In the case of voxel size as 1
meter, the bottom side point cluster contains 770 points and
the top side point cluster contains 761 points.

computation time of the proposed methods increases approx.
3 times as well. On the other hand, the TSP solver costs
approx. 8 times.

The inspection task using autonomous drones prefers a
simple and efficient global path guidance to ease the flight
control and to maintain safety under uncertainties during
the operation. Fig. 14 presents an example of the path
searching result generated from the proposed method and
the TSP solver. Both methods generate a traversal path that
guarantees a complete visit for all points. The path length of
the proposed result is 415.15 meters. Whereas the path length
of the TSP result is 416.24 meters. The accumulated turning
angle of the proposed result and the TSP result is 203.16

(TSP)(Proposed)

Fig. 14: Comparison of the path search results for the top
side point cluster between the proposed path search algorithm
and the basic greedy TSP method. The red lines represent
the paths generated by two path search algorithms. The green
sphere on the top-right corner denotes the starting point of
the path.

and 331.42 radians respectively. While both of the methods
provide an efficient path with regards to travel distance,
our proposed path search method provides a simpler path
structure than the TSP solver.

VI. CONCLUSION

This paper proposes a low complexity inspection path
planning processing method for aerial vehicles via sampling-
based sequential convex optimization. The point cloud gen-
erated from the 3D mapping service is used to represent
the inspection target and used as the input of the pro-
posed data processing chain. The proposed processing chain
first uniformly samples the point cloud based on a voxel
downsampling method. Then it is segmented based on the
bounding box facets, and a graph is generated for each point
cluster. The completeness of the inspection is guaranteed by
the proposed traversal path search algorithm to sequentially
visit and inspect each area of the inspection target. With the
calculated sequence, a sequential convex optimization is for-
mulated to find and optimize an inspection flight path subject
to sensor limitations, efficiency, and safety requirements. The
proposed method is validated with a dataset of a bridge and a
power pylon. The computation time and the scalability of the
method have been analyzed. The proposed method generates
a complete and efficient inspection path within a reasonable
time and shows linear scalability concerning the size of the
inspection target.
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