
1 
 

 
 

 
Drones4Safety 

 

Research & Innovation Action (RIA) 

Inspection Drones for Ensuring Safety in Transport Infrastructures 
 
 

Specification of the Multi-Drone Swarm 
System 

D5.1 
 

Due date of deliverable: 31.03.2021  
 

Start date of project: June 1st, 2020 

 

Type: Deliverable 
WP number: WP5 

 
Responsible institution: Aarhus University 

Editor and editor’s address: Rune Hylsberg Jacobsen, Aarhus University, Denmark 
 

 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 861111 

 

Version 1.0 
Release Date: March 31, 2021 

 

Project funded by the European Commission within the Horizon 2020 Programme 
Dissemination Level 

 PU Public ☒ 
 CO Confidential, only for members of the consortium (including the Commission Services) ☐ 

This project has received funding from the 
European Union’s Horizon 2020 research and 
innovation programme under grant agreement 
No 861111 

Ref. Ares(2021)2196845 - 30/03/2021



2 
 

Change Log 
Rev. Date Who Site Change 

0.1 01/06/2020 Annika 
Lindberg 

SDU Created initial version 

0.2 25/03/2021 Rune 
Hylsberg 
Jacobsen 

AU Updated after internal WP5 review. 

1.0 30/03/2021 Rune 
Hylsberg 
Jacobsen 

AU Final draft version. Updated with comments from 
review in the consortium. Ready for submission. 

 
 

Contributing authors 
This deliverable has received input from many project members of the Drones4Safety (D4S) consortium. The 
list of contributing authors follows below sorted alphabetically according to the first name. 

Emad Samuel Malki Ebeid, University of Southern Denmark (SDU UAS) 

Frederik Falk Nyboe, University of Southern Denmark (SDU UAS) 

Lea Matlekovic, University of Southern Denmark (SDU IMADA) 

Liping Shi, Aarhus University (AU) 

Néstor J. Hernádez Marcano, Aarhus University (AU) 

Nicolaj Haarhøj Malle, University of Southern Denmark (SDU UAS) 

Rune Hylsberg Jacobsen, Aarhus University (AU) 

Sam Münchow, Automotive & Rail Innovation Center GmbH (ARIC) 

 

 
  



3 
 

Contents 
 

1 Executive Summary ................................................................................................................................... 6 

2 Introduction ............................................................................................................................................... 7 

 Linking to system requirements ........................................................................................................ 7 

3 Concept of operation and functional requirements .................................................................................. 10 

 Overall autonomous mission control ............................................................................................... 10 

3.1.1 Preparation phase ..................................................................................................................... 10 

3.1.2 Operation phase ....................................................................................................................... 10 

3.1.3 Conclusion phase ..................................................................................................................... 11 

 Inspection ........................................................................................................................................ 11 

3.2.1 Mission initiation model .......................................................................................................... 11 

3.2.2 Task inspection model ............................................................................................................. 12 

 Drone to cloud interactions .............................................................................................................. 14 

 Communication ............................................................................................................................... 14 

 Swarming ......................................................................................................................................... 15 

 Cable detection, identification, and grasping .................................................................................. 16 

 Energy harvesting and power .......................................................................................................... 16 

 Positioning ....................................................................................................................................... 17 

 Safe landing operations ................................................................................................................... 17 

 Cloud service inspection support ..................................................................................................... 18 

4 Multi-drone system design ...................................................................................................................... 19 

 Drone hardware subsystem .............................................................................................................. 19 

4.1.1 Drone mechanics ..................................................................................................................... 20 

4.1.2 Drone sensor system ................................................................................................................ 21 

4.1.3 Drone electronics ..................................................................................................................... 22 

4.1.4 Auxiliary parts ......................................................................................................................... 23 

 Drone software subsystem ............................................................................................................... 23 

4.2.1 Software platform support ....................................................................................................... 23 

4.2.2 Application software for inspections ....................................................................................... 25 

4.2.3 Swarming software function .................................................................................................... 26 

4.2.4 Data objects ............................................................................................................................. 27 

4.2.5 Software configuration management and build support .......................................................... 29 

 Communications subsystem ............................................................................................................ 29 

4.3.1 Network architecture ............................................................................................................... 30 

4.3.2 Drone-to-drone communication .............................................................................................. 33 



4 
 

4.3.3 Drone-to-ground communication ............................................................................................ 35 

4.3.4 Drone-to-cloud communication ............................................................................................... 37 

5 Simulation environment .......................................................................................................................... 37 

 Structure of a multi-drone simulation .............................................................................................. 38 

 Gazebo environment ........................................................................................................................ 39 

6 Test and validation scenarios and environments ..................................................................................... 40 

 Test environments ........................................................................................................................... 41 

7 References ............................................................................................................................................... 43 

 

 

 

Acronyms 
Acronym Description 
5G Fifth-generation mobile 
AC Alternating Current 
AI Artificial Intelligence 
AODV Ad Hoc On-Demand Distance Vector 
AP Access Point 
API Application Programming Interface 
BVLOS Beyond Visual Line of Sight 
C2 Command and Control 
COTS Commercial-Off-the-Shelf 
CR Coding Rate 
CRC Cyclic Redundancy Check 
CSS Chirp Spread Spectrum 
D2C Drone to Cloud 
D2D Drone to Drone 
D2G Drone to Ground 
D4S Drones4Safety 
DB Database 
DC Direct Current 
DDS Distributed Data Service 
DNS Domain Name Service 
DP Drone Pilot 
DPA Drone Pilot Assistant 
EGNOS European Geostationary Navigation Overlay Service 
EMI Electromagnetic Interference 
ESC Electronic Speed Control 
ETSI European Telecommunications Standards Institute 
GALILEO European Global Satellite Navigation System 
GCS Ground Control Station 
GLONASS Global Navigation Satellite System 
GNSS Global Navigation Satellite System 
GPS Global Positioning System 



5 
 

GPU Graphics Processor Unit 
GRE Generic Routing Encapsulation 
GSD Ground Sampling Distance 
HA Home Agent 
HTTP HyperText Transfer Protocol 
HWMP Hybrid Wireless Mesh Protocol 
IMU Inertial Measurement Unit 
IP Internet Protocol 
ISM Industrial, Scientific, Medical (frequency band) 
JSON Javascript Object Notation 
LoRa Long Range radio 
LoRaWAN Lora Wide Area Network 
LPWAN Low Power Wireless Area network 
LTE Long Term Evolution 
MAC Medium Access Control 
MAVLink Micro Air Vehicle Link 
MES Mission Execution Supervisor 
MLME MAC Sublayer Management Entity 
MPM Mesh Peering Management 
MPO Mission Planning Operator 
NOTAM Notice to airmen 
OBC On-Board Computer 
OLSR Optimized Link State Routing Protocol 
OMG Object Management Group 
OPL Overhead Power Lines 
PSR Packet Success Rate 
QoS Quality of Service 
REST Representational State Transfer 
RFL Railway Feeder Lines 
RGB Red, Green, Blue 
ROS Robotic Operating System 
RPC Remote Procedure Call   
RTPS Real-Time Publisher-Subscriber protocol 
SITL Software-In-The-Loop 
SME Station Management Entity 
SSH Secure Shell 
SysML System Modeling Language 
T&C Telemetry & Control 
TCP Transmission Control Protocol 
ToA Time-on-Air 
UAS Unmanned Aircraft Systems 
UDP User Datagram Protocol 
UE User Equipment 
UML Unified Modeling Language 
URLLC Ultra-Low Latency and Reliable Communication 
VLOS Visual Line of Sight 
VNC Virtual Network Computing 
XML eXtensible Markup Language 

  



6 
 

1 Executive Summary 
The deliverable describes the design of the multi-drone system and its communications within the 
Drones4Safety (D4S) infrastructure. The main inputs for this design specification are the requirements and use 
cases defined in WP2 of the project.  

We report on a concept of operation analysis (Section 3) that describes the multi-drone system from an 
operational point of view identifying the key functions of the system. The description of these functions reflects 
on the system requirements and use cases and discusses how this impacts the multi-drone design. The 
autonomous missions are divided into three phases. The preparation phase involves key actors of the 
inspection mission planning and operation, defines the inspection objectives and plan the mission. In the 
operation phase, a swarm of drones carries out the inspection mission undergoing a sequence of charging 
procedures for longer durability. During this phase, mission progress is monitored from data provided through 
the Telemetry & Control (T&C) functions. The multi-drone system continuously upload the inspection results 
to the cloud services during the missions. In the conclusions phase, remaining data is gathered and the multi-
drone system is either retrieved from the inspection site or remains “resting” until a consecutive mission is 
initiated. 

The report defines the mission concept as a collection of “work tasks”, where each task can be assigned to a 
drone. The decomposition of tasks is an essential step of a collaborative autonomous inspection mission as it 
allows individual drones to focus on the specific part of the inspection e.g., upper bridge deck, support pillar 
number 3, etc. During the mission, the multi-drone system interacts with a set of cloud services that support 
the mission. We introduce the cloud services that are distinct from today’s online services used by drone pilots 
such as Optimal Task Allocation, Global Path Planning, No-fly Zone, Charging Spot, Cloud Storage, and Data 
Analytics Services. Furthermore, the scope for autonomous functions as cable detection, identification, and 
grasping, safe landing operation, energy harvesting & power supply, and positioning are defined.  

The communication infrastructure is a key foundation for achieving autonomy and collaborative mission 
design. The D4S system design differentiates between three different types of communication: drone-to-
ground, drone-to-drone, and drone-to-cloud infrastructure. This report outlines the result of the analysis of the 
communication infrastructure needs and defines the appropriate technologies to meet the different needs of the 
communication. For drone-to-ground communication, the range is a key performance requirement. We choose 
LoRa radio communication as it in practice provides few kilometers of range with data rates that can support 
T&C. A wireless mesh network is supporting drone-to-drone communication, which allows drones to share 
data and execute swarming protocols. To connect to cloud services and the Internet, the D4S communication 
infrastructure will be capable of using IPv6 for connectionless message exchange.  

In Section 4, we specify the multi-drone system and provide a set of structural SysML models to describe the 
hardware and the software parts of the system. The hardware design revolves around mechanical parts, sensors, 
and computation systems needed for making an autonomous drone hardware design. The software system is 
divided into parts related to flight control and autonomy, inspection applications, recharging control, swarm 
control, as well as software part for simulations. The drone design will rely on open source software 
components to support flight control such as software from the PX4 community. The majority of software 
developed for the multi-drone system in the D4S project is based on the ROS firmware platform and the 
software execution environment. We introduce the platform and described the environment in which software 
is built on this platform. 

Finally, the deliverable introduces the simulation environment used to assist the multi-drone system design. 
Simulations ease the steps needed to be taken from concept to actual design and support a fast feedback cycle 
during the development process. The report concludes by outlining the approach to testing and validation of 
the multi-drone system, which will be a major activity towards the end of WP5. 



7 
 

2 Introduction  
The Drones4Safety (D4S) project aims to increase the safety of the European civil transport system by building 
a cooperative, autonomous, and continuously operating drone system that will be offered to railway and bridge 
operators to inspect their transportation infrastructure accurately, frequently, and autonomously. A key part of 
achieving this overarching objective is to provide a cooperative multi-drone system able to perform the 
inspections by acquiring data from observing the inspection targets with specific purpose sensors such as a 
high-resolution camera. 

Deliverable D5.1 provides a specification of the cooperative multi-drone system design. It reports on the drone 
swarm system design and functional interfaces needed to support the main inspection use cases of WP2 in the 
D4S project. It furthermore addresses the connectivity and specifies the D4S communication infrastructure 
that allows the efficient exchange of information between the multi-drone system and cloud services including 
mission control. 

Intentionally, deliverable D5.1 does not concern network security aspects of multi-drone swarm system as this 
will be the scope of D5.2 “Multi-drone system threat analysis and specification of the security system design”.  

This report is organized as follows. The Introduction section (this section) outlines the scope of the deliverable 
and provides a linking to system requirements defined in WP2 of the D4S project. Section 3 provides a high-
level description of the multi-drone system from an operational perspective inspired by the term concept of 
operations from systems engineering. The concept of operations describes the characteristics of a proposed 
system from the viewpoint of an actor who will use that system. Section 4 details the specification of key 
functional parts of the multi-drone system. As simulations is a central part of the software development 
process, we provide an introduction to the relevant simulation environments for the multi-drone software 
development in Section 5. Finally, we introduce the planned approach to validation of the multi-drone system 
in Section 6.  

 Linking to system requirements 
The main input documents for this deliverable are the D2.4: “Use-case Document” version 3.5 and the D2.5: 
“Final System Requirements Document” version 1.0 from WP2 of the Drones4Safety (D4S) project. 
Deliverable D2.4 provided an analysis of different inspection sites of interest for the D4S project to find 
specific use-cases for bridge and railway inspection suitable to test and validate the D4S platform including 
the multi-drone swarm system. D2.5 presents high-level requirements and architecture for the D4S Drone 
System. Both deliverables contribute to the framing of the multi-drone system design. 

To provide a basis for the specification of the multi-drone system we identify essential requirements that will 
be fully or in part allocated to the multi-drone system. The verbs MUST, SHALL, SHOULD, etc. have the 
meaning defined in D2.5, MUST or equivalent terms “REQUIRED” or “SHALL” means that the definition is 
an absolute requirement of the specification. SHOULD or the adjective “RECOMMENDED”, means that there 
may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must 
be understood and carefully weighed before choosing a different course. From D5.2 we identify key 
requirements governing the multi-drone system design (Table 1). Functional, architectural, design, and 
operational requirements have been considered. Performance requirements are excluded from this analysis. 

 

Table 1: List of system requirements allocated to the multi-drone system.  

Requirement tag Short description Requirement type 
3.2.1.1 D4S_FUN_REQ_0010: 
BVLOS inspection 

The D4S System SHALL ensure the supervised flight 
inspection of linear grid infrastructures in BVLOS. 

Functional 



8 
 

3.2.1.6 D4S_FUN_REQ_0060: 
Multiple point of view 

The D4S System SHALL be able to acquire targets from 
multiple points of view / angles, ensuring a proper 
overlap between each pair of images/videos. 

Functional 

3.2.1.7 D4S_FUN_REQ_0070: 
Long endurance 

The D4S System SHALL be able to ensure long-
endurance inspection campaigns of the target 
infrastructures without direct human intervention. 

Functional 

3.2.1.10 D4S_FUN_REQ_0100: 
Functional Safety 

The D4S System SHALL respect all the UAS and 
railway safety regulations applicable to the inspected 
areas. 

Functional 

3.2.1.11 D4S_FUN_REQ_0110: 
Safe State 

The D4S System SHALL foresee a safe state into which 
it automatically goes when a safety breach is detected. 

Functional 

3.2.1.12 D4S_FUN_REQ_0120: 
Positioning 

The D4S System SHALL be able during a mission to 
measure and track in real-time the position of each 
element of the system itself with respect to a given 
coordination system (such as the longitude, latitude, and 
altitude with respect to a given reference). 

Functional 

3.2.1.13 D4S_FUN_REQ_0130: 
Recharging 

The D4S System SHALL be able to detect when it is 
necessary to perform the recharge, also considering the 
distance to the nearest point of recharge. 

Functional 

3.2.1.14 D4S_FUN_REQ_0140: 
Autonomous recharging 

The D4S System SHALL be able to autonomously 
harvest energy for self-recharge from both high-voltage 
cables (i.e. >100kV) and railway overhead power line 
cables (transmission lines/railways power lines4, 
between 2 and 50kV AC or between 220 and 3,000V 
DC). 

Functional 

3.2.1.15 D4S_FUN_REQ_0150: 
AC/DC 

The D4S System SHALL be able to harvest energy 
either from AC or DC power lines. 

Functional 

3.2.1.16 D4S_FUN_REQ_0160: 
Collision avoidance 

The D4S System MUST implement collision and object 
avoidance countermeasures during both flight and 
recharging. 

Functional 

3.2.1.17 D4S_FUN_REQ_0170: 
Communication 

The D4S System SHALL implement a communication 
network to interconnect the different parts of the system 
itself. 

Functional 

3.2.1.18 D4S_FUN_REQ_0180: 
Processing 

The D4S System SHALL expose processing capabilities 
either on-board, at ground-segment, and in the cloud. 

Functional 

3.2.1.20 D4S_FUN_REQ_0200: 
Mission Execution 

The D4S System SHALL be able to autonomously 
execute a previously defined flight inspection mission, 
including take-off, en-route, recharging, and landing. 

Functional 

3.2.1.22 D4S_FUN_REQ_0220: 
Mission Replanning 

The D4S System SHALL allow the dynamic 
reallocation of the resources during a mission. 

Functional 

3.2.1.25 D4S_FUN_REQ_0250: 
Online information sources 
ingestion 

The D4S System SHOULD be able to integrate online 
information sources (like weather forecasts) for 
eventually and dynamically update flight plans. 

Functional 

3.2.1.26 D4S_FUN_REQ_0260: 
Drone Flight Planning 

The D4S System SHALL provide a possibility to 
submit, change or remove a drone flight plan (or flight 
intent) and will respond by approving or rejecting. 

Functional 

3.2.1.27 D4S_FUN_REQ_0270: 
Geofencing 

The D4S System SHALL receive, combine, store and 
provide geofencing and geographical limitations 
information to drones such as maps, map-layers, 
coordinates of the ground objects and obstacles 
(elevations), NOTAMs, according to their activation 
schedules. 

Functional 

3.2.1.28 D4S_FUN_REQ_0280: 
Unique Identification 

The D4S System SHALL process the drone unique 
identifier (e.g. the Electronic Identification) received 
together with the tracking message (position and 
timestamp) and link them to the D4S system internal 
unique identifier assigned to a drone. 

Functional 



9 
 

3.2.1.34 D4S_FUN_REQ_0340: 
Emergency 

The D4S System SHALL be able to receive and send 
emergency information and alerts. 

Functional 

3.2.1.39 D4S_FUN_REQ_0390: 
Information about recharge 
possibility 

The D4S System SHOULD receive information about 
the recharging possibilities, like if the planned 
recharging point is available or not (e.g. overhead line is 
in operation or out of service). 

Functional 

3.2.1.40 D4S_FUN_REQ_0400: 
EMI 

The D4S System SHALL compensate for the effects of 
high electromagnetic interference on the drones and on 
the drones’ sensors, such as compasses. 

Functional 

3.2.3.1 D4S_TNA_REQ_0550: 
Long range wireless 
communication 

The D4S System SHALL use long-range wireless 
communication network techniques. 

Technical/Architectural  

3.2.3.2 D4S_TNA_REQ_0560: 
Effective wireless 
communication 

The D4S System SHALL have wireless 
communications with acceptable goodput/throughput 
for conveying inspection and telemetry data to mission 
control. 

Technical/Architectural  

3.2.3.3 D4S_ TNA_REQ_0570: 
EGNOS/Galileo GNSS 
navigation 

The D4S System navigation capabilities SHALL be 
based on EGNOS/Galileo GNSS. 

Technical/Architectural  

3.2.3.5 D4S_TNA_REQ_0590: 
Microelectronic interface 
between harvester and drone 

The D4S System SHALL implement a microelectronic 
interface module between the light-weight harvester and 
the drone’s energy and control systems 

Technical/Architectural  

3.2.4.1 D4S_DES_DES_0620: 
Cooperative Drone System 

The D4S System SHALL implement a cooperative 
drone system. 

Design 

3.2.4.2 D4S_DES_DES_0630: 
Autonomous Drone System 

The D4S System SHALL implement an autonomous 
drone system. 

Design 

3.2.4.3 D4S_DES_REQ_0640: 
Electric arcs protection 

The D4S Drone shape has to be designed to protect the 
drone components from the electric arcs that are 
generated by the electric field as a result of a high 
voltage potential between the cables (e.g. 400 kV AC / 
25 kV AC) and the drone voltage (e.g. 11.1 V DC / 22.2 
V DC). 

Design 

3.2.4.4 D4S_DES_REQ_0650: 
Three-tiered design 

The D4S System design is envisioned to be a three-
tiered design consisting of cloud services-based back-
end, the drone swarm, and a network facilitating 
communication between the former two. 

Design 

3.2.5.1 D4S_DES_OPE_0690: 
Continuously Operating Drone 
System 

The D4S System SHALL implement a continuously 
operating drone system. 

Operational 

 

 

  



10 
 

3 Concept of operation and functional requirements 
This section analyses the multi-drone system from an operational point of view. The analysis is essential for 
the understanding of the functional composition of functions of the system as well as providing a basis for a 
multi-drone system architecture. 

 Overall autonomous mission control 
A mission can be divided into three phases: The preparation phase, the operation phase, and the conclusion 
phase. Since inspection missions are reoccurring events, the three phases will be repeated cyclically. The 
Actors important for these phases were introduced in D2.4 [1].  

3.1.1 Preparation phase 
The Mission Planning Operator (MPO) is the key actor of the planning phase. For the visual line of sight 
(VLOS) inspection operations, the Drone Pilot (DP) and the Drone Pilot Assistant (DPA) are key actors. 
He/she will in the beyond visual line of sight operation (BVLOS) be accompanied by the Mission Execution 
Supervisor (MES). The mission planning is supported by a set of cloud services such as map information, 
weather forecast, and route planning that are available as cloud service support (cf. Section 3.10). 

An inspection mission defines the objective and the associated data to describe the mission type, the starting 
and ending points of the mission, a geofence, among others. It is a key outcome of the mission planning phase. 
A mission can be divided into a set of tasks that can be allocated to the drone swarm in the operation (cf. 
Section 4.2.4). Before the inspection mission begins the drone swarm is transported to the inspection area and 
means to supervise the inspection missions. This includes the establishment of a physical Ground Control 
Station (GCS). Due to current regulation in the drone domain, the GCS is necessary for the DP or the MES to 
take over control of the drone swarm, e.g. in case of unforeseen events that could jeopardize safety.  

3.1.2 Operation phase 
The swarm of autonomous drones carries out the inspection mission by executing the tasks of the mission. 
First, they navigate to the starting point of the mission accompanied by a global path plan provided by a cloud 
service. A task allocation function decides on the allocation of individual mission tasks to drones. The task 
allocation function can be either centralized, e.g. controlled from the GCS, or fully decentralized to support 
the continuous swarming operation. For instance, a drone in the swarm may be given the task to inspect the 
upper deck of a bridge whereas two other drones would be allocated the tasks of inspecting the north and south 
sides of the bridge, respectively. The drone swarm performs the inspection mission in a continuous way by 
receiving a new task when an assigned task has been completed. This continues until there are no more tasks 
defined for the mission.  

The inspection path plan is planned/calculated by the drone swarm. The inspection path plan provides a finer 
granularity of waypoints for navigating the inspection, considers inspection camera viewpoints and obstacles 
in the local environment. During the inspection, the drone will follow the inspection path and record images 
according to the specification of the inspection task. In this process, robust and accurate navigation is critical 
for the quality and the safety of the inspection and cannot alone rely on GNSS as GNSS signal interference 
and obstructions may occur due to the influence of the structure under inspection.  

An inspection mission is constrained by the energy (charge) of the drones. Each drone will need to go through 
several charging cycles during an inspection mission. When operating autonomously, the drone swarm handles 
charging by following a charging protocol that essentially creates high-priority charging tasks to be scheduled 
by the task scheduler function. The location of charging points may be preloaded to individual drones (static) 
or fetched from a cloud service (dynamic). The latter case addresses the situation where the charging point has 
a limit on the number of drones that it can serve at the same time or if the charging point is mobile. The key 



11 
 

output of the inspection phased is the collection of annotated images that are stored and continuously shared 
with a cloud service storage. Annotation results from the continuous inference provide by AI algorithms 
running on the inspection drones.  

To be able to continuously monitor the progress of an inspection mission, a Telemetry & Control (T&C) 
function is implemented in the drones. Each drone will report is telemetry data such as position, velocity, a 
current task assigned, charging level, etc. to the GCS. The GCS provides this information to the mission control 
on the continuous progress of the inspection mission. The communication to support telemetry needs 
potentially need to support long-range e.g., several kilometers. However, the amount of data needed for 
telemetry is small compared to inspection images.  

3.1.3 Conclusion phase 
When all tasks of the mission are completed, the drone swarm is retrieved and removed from the inspection 
area or drones may “rest” until a new mission is assigned. All relevant information such as geotagged and 
annotated inspection images are uploaded to the Cloud Storage Service. Mission information can be retrieved 
and visualized after the mission ended. 

In the conclusion phase, the MPE actor examines the data from the mission and validates that the mission has 
objectives that have been met. The MPE takes necessary actions to “clean-up” after the mission such as 
collecting drones and GCS installation and reporting to the owner of the mission.  

 Inspection 
The business logic of an inspection operation can be modeled as a set SysML/UML activity diagrams. The 
activity described provides the logic of the software application controlling the inspection mission. A mission 
is defined by a Mission Specification created by the MPO actor. The mission has a unique identifier and is 
allocated to a drone swarm. It is possible to associate a geofence polyhedron to a mission that will restrict 
drones to stay inside drones to only perform inspection inside this polyhedron. The polyhedron is defined by 
a set of GNSS location coordinates. The mission is associated with one or more tasks that are ordered in a list. 
Tasks are described by Task Specifications and have unique identifiers. Furthermore, tasks are described by 
an inspection type e.g., bridge (upper) deck inspection, catenary cable inspection, etc. A task has a start and 
end location defined by GNSS coordinates. Tasks are associated with a data acquisition specification that 
describes which sensors to use e.g., RGB camera, frequency of data acquisition, speed of the drone during data 
acquisition, etc.  

3.2.1 Mission initiation model 
Before an inspection mission can begin, preparatory steps need to be taken. It assumes that the drones have 
been transported to an area that is close to the inspection site. It is further assumed that drones are charged.  

Figure 1 shows an activity diagram describing the inspection initiation process. When drones are turned on the 
Connect to GCS using Drone-to-Ground (D2G) communication. Subsequently, drones connect to form a 
wireless mesh network by using Drone-to-Drone (D2D) connections i.e., enabling connectivity for swarming 
functions. This allows drones to form a swarm and invoke swarming functions. Following this, a mission is 
assigned to the drone swarm. The mission specification is retrieved from the cloud service by using Drone-to-
Cloud (D2C) communication. Alternatively, the mission can be downloaded to the drones before the initiation 
of the inspection. A Validate step is performed to ensure that all initial settings are in place and that the multi-
drone system is ready to begin the inspection mission. 



12 
 

 

Figure 1: Activity diagram modeling the preparation of the multi-drone system for an inspection mission. 

 

3.2.2 Task inspection model 
Figure 2 shows an activity diagram for a task inspection for a single drone of a D4S drone swarm. The process 
is initiated by the mission operator actor and presumes that the inspection mission has been prepared through 
the initiate task inspection. 

 

Figure 2: Activity diagram for a task inspection of a drone. 

 
The first action after initialization is for the drone to participate in the task allocation activity. Details of the 



13 
 

protocol are subject to further research and are beyond the scope of this deliverable. The output of the process 
is an allocation of a set of prioritized inspection tasks as symbolized by the Task object. An inspection task 
could in natural language be formulated as “inspect the upper bridge deck from location A to location B using 
the high-resolution RGB camera with an image frequency of one image per 10 seconds” or similar. Tasks are 
performed sequentially according to priority in an iterative way. Note that tasks in this context also include 
traveling to the starting location of the inspection. 

Subsequently, a cooperative path planning process is run. The cooperative aspect of the path plan arises from 
the fact that the path plan of a single drone in the multi-drone system depends on the path plan of the other 
drones in the system. This ensures that drones can travel together along the same route without colliding and/or 
they can fly as a swarm in a predefined formation. For the latter part, a specification of the formation 
constraints is used as an input in the cooperative path planning. Part of the cooperative path planning embeds 
a waypoint-guided path planning that describes the inspection path a drone should undertake to position itself 
in the right viewpoints for when taking inspection images. This process is leveraged by the use of 3D models 
of the inspection target (i.e, the digital twin) or a part of the inspection target. For instance, a segment with a 
supporting pillar and the underneath deck of a bridge may be used by the drone to calculate an inspection path. 
By using a 3D model as input for the inspection, a good inspection coverage of the construction can be ensured. 
An example of a bridge model from the use case definitions is shown in Figure 3. The bridge is located near 
Villalvernia in Italy and described in D2.4. In the example, the part that needs inspection is cropped and 
captured by a bounding box (middle part of Figure 3) and converted into a voxelized map (right part of Figure 
3).  The smoothness is represented by the difference in color with blue color representing the more smooth 
facets. 

 

    

Figure 3: Example of 3D model of the Villalvernia Bridge, Italy. Left: point cloud information. Center: cropped 
and cleaned section for inspection. Right: Transformed voxelization of the bridge used for input in the 
inspection path planning algorithm. 
 
When a cooperative path plan for the drone is calculated, the inspection may begin. The process forks in four 
critical activities that run in parallel: telemetry reporting, energy monitoring, progress monitoring, and 
inspection flying each running continuously (cf. Figure 2). The telemetry reporting activity ensures that the 
progress and telemetry reports are sent to the GCS. The progress monitoring supervises the progress of the 
current inspection task (or a prioritized list of tasks). When a task has run-to complete it breaks out of the loop 
and proceeds to the end-node through the join-node. The battery charge (Q) status of the drone is continuously 
monitored by the energy monitoring activity. If the charge falls below a defined threshold, the drone breaks 
out of the loop and proceeds with the charging protocol. Specific details of the charging protocol are beyond 
the scope of this specification. The charging protocol will return the drone recharged and ends the current task 
inspection. The drone can retake inspection work from the start node and go through the task allocation activity 
again. This decoupling of task allocation and charging is advantageous because the charging time can vary 
significantly and may be hard to predict. Finally, the inspection flying activity is responsible for the drone 
visiting the waypoints defined in the cooperative path plan and acquiring inspection images according to the 
specification provided in the task specification. The acquired images are transferred to a storage system from 
where they can be fetched and sent to the cloud services asynchronously relative to the task inspection.  



14 
 

 Drone to cloud interactions 
The exchange of information between the drone swarm system and the cloud services is done over the Internet. 
A common D4S data object model (i.e., the set of relevant data objects cf. Section 4.2.4), ensures the 
interoperability between applications running in the drone swarm system on air, the GCS, and the cloud 
infrastructure. The basic interactions between the drone system and the cloud are characterized by being 
asynchronous with loosely coupled entities such as clients and servers of a client-server programming model. 
This communication paradigm fits well with the D4S Drones System design and accordingly with standard 
global Internet connectivity and web services-based client-server interaction models. A mission global path 
plan, which is determined by a service in the cloud, is communicated to the drones in form of locations to be 
inspected with tasks that define the inspection itself. Drones report their status back to the cloud by sending 
their current location, velocity, charging level, etc., along with other relevant telemetry data. During the 
mission, drones send the telemetry data and inspection images (Result data) to the cloud. Data is stored in the 
cloud and can be retrieved after the mission. Drones must be monitored according to such telemetry data and 
be able to receive commands as part of their operations, preventions of hazardous maneuvers, and/or 
maintenance. 

 Communication 
Following the D4S system architecture, we divide the communication aspect into three scopes. These three 
different scopes for communication can also be identified from the analysis of the inspection use cases [4]. 
First, the system is required to support communication between a drone and the ground infrastructure to support 
control and command as well as continuous telemetry reporting. Second, the drone swarm needs to form a 
communication network that allows drones to coordinate and share local information for different tasks 
coordination activities, e.g., joint path planning, task allocations, etc. Third, the multi-drone system should be 
able to connect to the cloud services from mission support for image data offloading, and remote telemetry 
reporting/telecommand. Table 2 provides an overview of the key performance characteristics for the different 
scopes of communication. 

Table 2: Scope of communication between parts in the system architecture. 

 Scope of communication 

 Drone to Ground (D2G) Drone to Drone (D2D) Drone to Cloud (D2C) 

Range up to 2 km 100-200 m global connectivity 

Throughput 10-100 kbps 0.1-10 Mbps >10 Mbps 

Latency budget <50 ms for Command 
and Control (C2) 

Determined by ROS 
QoS profiles 

Determined by network 
latency. Limited by ROS 
performance 

Resiliency Preferrable dual-channel 
system.  

Low communication 
layer retransmissions 

High communication 
layer acknowledgments 
(TCP/IP) 

Network types Point-to-point links Mesh network Global IP networking 

Applications 1) Telemetry & Control 
(T&C) 

2) Communication 
relay  

Swarm coordination High-level mission 
control and reporting- 
Data exchange 

 



15 
 

The Telemetry and control (T&C) function allows continuous telemetry reporting from the drones. Also, it 
provides a way for an operator or supervisor to take over control of the flight of an autonomous operation. 
Besides, the T&C function is essential during test and development in the D4S project as it provides a way to 
make functional testing in a controlled way. The essential characteristics of such T&C communication 
channels include long communication ranges, low latency, and high reliability. 

The latency budget specifies the maximum acceptable delay from the time the data is written until the data is 
inserted in the receiver's application. Such a latency budget must be established for each of the previous 
communication scopes and where the acceptable threshold for these budgets is defined by the corresponding 
running applications or technology/network physical limitations. 

To enable swarming functions, continuous coordination between drones is needed. The connectivity model is 
primarily base on one-to-many communication (1:n) or group communication (m:n) in a highly dynamic 
setting. The multi-drone system will provide a basis for wireless mesh communication that will ensure a good 
network coverage with robust communication links for this D2D communication. 

To connect the drone swarm will be able to communicate with cloud servers by using IP to cope with the 
transport of information over heterogeneous networks. Internet communication is a well-tested technology 
with widespread deployment. It is possible to access the Internet in many places throughout Europe including 
rural areas. 

 Swarming 
The swarming solution shall efficiently segment tasks to multiple drones and provide a path plan for multiple 
drones to follow task-specific high-level guidance in an environment with obstacles. Besides, swarming shall 
enable multiple drones to fly in configurable formations, which e.g., allows for implicit coordination of the 
inspection operation. For instance, three drones of a swarm may fly in a formation where two drones examine 
the two sides of a bridge deck and the third drone the upper part of the deck. The swarming solution reads task 
data and on-board sensor data as input, then generates trajectory data (waypoints) for the flight controllers of 
multiple drones. The solution shall also provide member discovery, data sharing, and synchronization between 
drones. In this regard, the swarming system provides a common information-sharing context where shared 
information of the drone swarm is handled. 

The multi-drone system implements a membership management protocol to ensure drones dynamically joining 
or leaving the swarm. The swarm membership management mechanism ensures that drones can at any time 
decide to join the swarm or leave if already joined provided that the drones are within the same subnetwork1. 
Note that the drones of the swarm may not all be mutually in the radio range of each other as the mesh 
networking may ensure drones to be connected via multi-hop communications. From a network layer point of 
view, the drone shall implement one or more multicast channels to support the communication within the 
swarm. Furthermore, it is a prerequisite that each drone continuously keeps track of the members of the swarm 
i.e., run the membership management protocol. A critical aspect of the swarm membership management 
mechanism is the authentication and authorization of join attempts. These security aspects will be addressed 
further in deliverable D5.2. 

Cooperative task allocation is required for the multi-drone system to optimize the efficiency of the task 
operation among multiple drones. The cooperative task allocation should segment the task based on the number 
and the characteristics of the drones. It monitors the progress of the task during the operation and automatically 

                                                      
1 This is not stricktly necessary as multicast routing could be implemented, which will allow drones to be part of different 
subnetworks. However, it simplifies the network configuration.  



16 
 

adjusts the task allocation plan for drones to maximize the use of drones. Cooperative task allocation provides 
high-level command, the task allocation plan, for the task-specific path planner of the multi-drone system. 

 Cable detection, identification, and grasping 
Some tasks, such as charging with energy harvesting during inspection operations, rely on information about 
the position of nearby electrified cables and related infrastructures such as pylons, insulators, and dampeners 
relative to the drone. To detect and track these objects the drone will be equipped with an optimized sensor 
package. Sensors in this package are selected based on criteria such as weight, size, power consumption, and 
price – and of course their ability to detect the relevant objects. During operation, the sensor package will 
generate data that can be used to estimate positions of nearby infrastructure such as cables and pylons. 

The diameters of electrified cables in power infrastructures in Europe vary depending on their purpose and 
geographical location. To accommodate for this, the proposed solution must be able to detect cables with 
diameters between 10 mm to 40 mm from various distances. During powerline detection, the drone will be 
positioned next to or underneath the cables. Close to the cables, an accurate estimate will be required to 
facilitate precise navigation and avoid undesired physical contact, while longer distances allow for a less 
accurate estimate. At long ranges (>5 m from cable), 80% detection accuracy is tolerable while at short range 
(<5 m) detection accuracy should be at least 90%.  

Once a cable is detected, identifying different cable parameters (voltage, energized/non-energized, grasping 
points) is important to determine an optimal landing and recharging cable candidate. A learning algorithm will 
be trained to make a decision based on information such as knowledge of the power distribution network, 
results of cable pose estimation, and onboard vision sensors. If the level of confidence of the system is higher 
than the safety threshold, then the drone will proceed with the cable grasping. Otherwise, it will go for a safe 
landing operation cf. Section 3.9; assuming that the drone is low on energy since it was persuing a charging 
task. 

Initiating the cable grasping procedure within 2 m below the cable, the drone must verify the wind conditions 
and the cable pose estimate accuracy. The system must then be able to carry out the cable grasp operation for 
wind speeds up to 10 m/s and wind gust speeds up to 15 m/s. The drone must be able to predict the cable 
movements while applying combined trajectory planning and tracking until reaching the cable. When the cable 
is within reach of the gripper, the drone grasps immediately and enters into the charging mode. The success 
rate of this operation must be >70% under the stated circumstances. In case of failing to reach the cable, the 
drone comes back to the latest point of detecting the cable.  

 Energy harvesting and power 
The energy harvester design is a special development of the D4S project (WP3) that brings an energy harvester 
system (recharging system) for drones at overhead power lines (OPL) as well as railway feeder lines (RFL) 
during an autonomous inspection flight of bridges and railways. The main design concept of the energy 
harvester has been specified in deliverable D3.1 [37]. The deliverable describes the boundary conditions and 
requirements for the development of the harvester system. The harvester will significantly extend the duration 
of inspection mission operations by allowing drones to shift between flying and recharging.  by contacting the 
conductors and convert the voltage to the level needed for charging the battery of the drone 

The design of the energy harvester subsystem aims to provide a good tradeoff between efficiency in energy 
conversion and the weight of the harvester, which critically impacts the flight time of individual drones. The 
goal is to harvest energy fields from AC or DC lines. It should be noted that the recharging solution is different 
when the drone needs to recharge from an AC (inductive coupling) or a DC source (contacting). At OPL the 
drone approaches the line and attaches itself to the conductor. According to the inductive principle, the drone 



17 
 

harvests energy by bringing a coil around the conductor. The electromagnetic stray field around the current-
carrying conductor induces a voltage in the coil, which is converted by the electronics for charging the battery. 
From a technical point of view, high-voltage OPLs provide easy access for drones. The drone can approach 
the power line from underneath and grasp itself to the line resulting in a stable mechanical attachment to the 
line. This procedure requires the drone to be able to detect the position to the cable, navigate to the cable, and 
grasp the cable. For the harvesting from DC lines e.g., RFLs, the drone has to connect to the ground potential 
and the high-voltage line to enable the recharging process. It is planned that the drone will first connect to a 
ground contact via a cable connection and then connect to the high voltage. The electronics convert the high 
voltage into the necessary low voltage to charge the battery.  

 Positioning 
To get an accurate and robust position, every single drone in the swarm will use a multi sensor-based 
positioning algorithm. The basis for localization is the GNSS-based position, which is determined by a multi-
constellation GNSS receiver that receives and processes GPS, GLONASS, and GALILEO signals. The GNSS-
based position is stabilized with 3D-IMU-data and visual odometry. The visual odometry will be calculated 
from a lidar point cloud (or depth camera point cloud) and the sensor data is processed in a Kalman filter. 

For better accuracy, the drones will use an extension system for the GNSS position. Within the D4S project, 
we will evaluate if a satellite-based system like EGNOS or an internet-based system like Skylark will fit best 
for the multi-drone application. 

Additional research will be applied to further increase the positioning accuracy. Two approaches will be 
pursued to explore whether they can be beneficially applied to the swarm’s localization performance: 

• Use Map (digital twin) for localization: The concept is to use the digital twin also for localization. 
Particularly, well recognizable, significant parts can be used as anchor points, which can be clearly 
identified in the Lidar point cloud. Furthermore, if the exact geodetic position of such an anchor point 
would be known, it could be used as a ground truth reference, too.  

• Use Swarm itself for triangulation: The drones continuously exchange their determined positions 
amongst each other. If a drone is in an area of weak satellite reception, i.e., GNSS is not working 
properly, its position can be determined by triangulation with two other drones. Furthermore, by using 
this procedure, each drone could validate its calculated position, too.  

 Safe landing operations 
Safety is of utmost importance for the multi-drone system operation. Drones must be able to conduct 
emergency procedures that will bring safety to a stop and land on the ground without jeopardizing the safety 
of activities in the ground e.g., human activities. 

The multi-drone system will be working in environments where people and animals are present. The local 
environment may also be represented by steep slopes and hills or might be crowded with man-made objects. 
Since the drones will have an inevitable chance that they malfunction or otherwise are required to land, it is 
important that their landing is non-threatening. It is, therefore, necessary for the drones to have a well-defined 
procedure for emergencies that could occur initially or during flight. The multi-drone system should implement 
a protocol for the detection of safe landing zones. The protocol should rely on perception based on local sensors 
such as a depth camera.  

A safe landing zone is generally defined as 1) an area without the location of man-made objects and 2) a flat 
region. The avoidance of man-made objects is included to disallow the drone from landing on buildings, roads, 
or similar potential hazardous places. It makes sense to include this criterion as the risk of humans being nearby 



18 
 

man-made objects is substantially bigger than at non-man-made objects. This will reduce the risk of damaging 
any humans in an emergency where the drone would require the use of safe landing zones. In many areas 
where the reconnaissance protocol will be used for bridge or railway inspections, there will likely be a decent 
number of locations that conform to the two requirements, as many bridges and railway segments are located 
distant from cities. Flat regions are included because the drone needs a flat region to land in a controlled 
manner. 

The general approach in the literature is to use stand-alone images to detect safe landing zones for the drones 
[5][6][7]. Furthermore, the images are captured from directly above the area of interest with an angle of the 
camera view perpendicular to the ground, which may not be realistic in a real drone flight mission.  

Another safety aspect concerns the situation where a motor failure or a failure to the low-level flight control 
of a drone potentially leading to a drone crash. In such a case, when a drone will lose its maneuverability, a 
mechanism to mitigate the size of the impact of the drone crashing to the ground or impacting humans, animals, 
or manmade objects. A possible mitigation mechanism includes implementing an emergency parachute to be 
deployed automatically from the drone to minimize the impact of the crash. 

 Cloud service inspection support 
To support the autonomous mission, several cloud services are essential. Today, drone operators already use 
cloud services such as local weather forecasts and restricted fly-zones. For the D4S use cases, additional cloud 
services result from an effort in WP4 and WP6. Cloud services are supported with a web interface where the 
operator can plan, execute and monitor the mission. All data collected through the mission is stored in the 
cloud and could be retrieved, visualized, or analyzed any time after the mission. Nevertheless, the cloud 
services needed for the autonomous drone operation are shown in Table 3.  

Table 3 Cloud Services for the D4S project. 

Service name Description 

Optimal Task 
Allocation Service 

When the inspection targets are set, the service uses algorithms to determine the 
optimal or suboptimal order of allocating tasks to the drone swarm. 

Global Path 
Planning Service 

Global path planner takes into consideration information provided by other services 
and calculates mission routes for the drones in the swarm. Calculated routes are based 
on the MPO’s entries and visualized on the web interface. Route data is sent to the 
drones in form of real-world locations. 

No-fly Zone 
Service 
 

The service provides areas where autonomous drone flights cannot be executed. No-
fly zones are determined based on static data provided by the authorities. 
Additionally, official no-fly zones are supplemented with locations of residential 
areas, highways, and critical infrastructure (power plants, transformation stations, 
etc.) where it is not safe to execute autonomous flights. Determined areas are used 
for global path planning.   

Weather Forecast 
Service 
 

Weather forecast service determines and dynamically provides weather data (wind, 
snow, rain, etc.) to the path planner for a specific flight area. Based on that data, it is 
decided if the flight should be suspended, rerouted, or continued as planned.  

Charging Spot 
Service 
 

Charging spot service determines areas where drone charging is safe and possible. 
Spots are taken into consideration while allocating tasks and planning routes.  



19 
 

Cloud Storage 
Services 
 

Cloud storage consists of databases where data received from the drones is stored. 
Stored data consists of drones' mission positions, velocities, telemetry, and images 
collected during the inspection. Data can be visualized anytime using a web interface 
and can be used for further analysis.  

Data Analytics 
Services 

Data analytics services analyze data stored in cloud storage. It includes image 
analysis and 3D image reconstruction, which give valuable results important for 
mission success.   

 

4 Multi-drone system design 
Based on the above analysis and functional descriptions of the multi-drone system, a more detailed design 
specification follows below. As a means to specify the system, we provide model descriptions for selected 
parts of the system using the SysML/UML graphical modeling language.  

Our analysis starts by defining the structure of the multi-drone system (Figure 4), which is our system-of-
interest for this deliverable. Essentially, the multi-drone system can be defined from a hardware and a software 
part. As the software part have several different constituents we represent it as an abstract block on this level 
in the block definition diagram (bdd). 

 

  

Figure 4: High-level system model of the Multi-Drone System. 

The following subsections specified the individual blocks from a functional point of view. 

 Drone hardware subsystem 
The physical specifications of the drone are contained as the Drone Hardware subsystem (Figure 1Figure 5). 
This spans several conceptual blocks. The drone Mechanics comprises the structural layout of the drone, the 
propulsion system, and the Electromagnetic Interference (EMI) shielding for enabling operation in harsh 
environments. The Sensor System covers sensors utilized for flight control, both low level and high level. The 
drone Electronics specify the major electronic equipment the drone is carrying for enabling computation and 
communication. Finally, the Auxiliary Parts cover the additional payload of the drone enabling energy 
harvesting, inspection, and localization. This part depends on the specifics of the inspection mission. 



20 
 

 

Figure 5: Inspection drone hardware block diagram. 

 

4.1.1 Drone mechanics 
The mechanics of the drone hardware subsystem will be designed for optimal wind disturbance rejection. This 
influences the mechanical layout of the propulsion system and the morphology. The propulsion system will 
consist of several thrust vector units. These will be positioned on the drone for optimized wind disturbance 
rejection, which is necessary when flying near infrastructure potentially damaging the drone if hit. The 
mechanical parts of the drone are summarized in Table 4. 

Table 4: List of mechanical parts of the drone hardware subsystems. 

Mechanical part Description 

Body Frame The body frame is the structural part of the drone. This will be designed 
according to the intended drone morphology. 

EMI Shielding The drone will be protected by EMI shielding from the electrical charge 
exchanged when touching an overhead power line. 

Thrust Vector Unit A thrust vector unit comprises a propeller, an ESC, an electric motor, and 
possibly a servo motor. The drone will carry ≥ 4 thrust vector units. 

Propeller The propellers will be scaled according to the final requirements for payload 
capacity and wind disturbance rejection. 



21 
 

ESC The Electronic Speed controllers (ESCs) controls the rotational speed of the 
electric motors. 

Electric Motor The electric motors drive the propellers. 

 

4.1.2 Drone sensor system 
The sensors equipped on the drone are divided into sensors necessary for stability and navigation (low-level 
control sensing) and sensors required for detection of the power line from which the drone charges (high-level 
control sensing). The sensors applied for low-level control sensing are summarized in Table 5. 

Table 5: List of low-level control sensors of the drone hardware subsystem. 

Low-level control sensor Description 

IMU 
Inertial measurement unit. Comprises of a 3-axis accelerometer, a 3-axis 
gyroscope, and a 3-axis magnetometer. Delivers positional information 
for the low-level flight controller. The drone will carry ≥ 1 IMU. 

Accelerometer 
The accelerometer in an IMU measures the translational acceleration in 
each direction. It also supplies information about the direction of gravity. 

Gyroscope 
 

The gyroscope in an IMU measures the rotational velocity around each 
axis. 

Magnetometer 
 

The magnetometer in an IMU measures the direction of the magnetic 
north. 

Barometer 
A barometer measures the air pressure intended for deriving the altitude 
of the drone. The drone will possibly carry a barometer. 

GNSS Module 
The GNSS module (i.e. Global Navigation Satellite System using GPS 
and GALILEO signals) supplies global position information. The drone 
will carry ≥ 1 GNSS module. 

 
The sensors deployed for high-level control of the drone during cable grasping operations are not yet specified, 
as the choice of these constitutes a design choice and a research objective. However, the sensors will be chosen 
by a requirement for the combined weight (< 250 g), a requirement for the combined price (< $1,000), a 
requirement for combined power consumption (< 15 W), and a requirement for combined sensor fusion output 
rate (> 100 Hz for distance < 2 m). Some relevant sensor technologies are summarized in Table 6. Furthermore, 
it is intended to apply Kalman filter sensor fusion and hardware acceleration. 

Table 6: List of high-level control sensors of the drone hardware subsystem. 

High-level control sensor Description 

Magnetometers 
Using magnetometers to measure the magnetic field emitted by the 
power lines, the position of the power line can be derived 
geometrically. 

RGB Camera An RGB camera can be applied for the detection of the power lines. 

Depth Sensors 
 

Several possible depth sensors exist, that can supply three-
dimensional point cloud representations of the environment. 



22 
 

 

4.1.3 Drone electronics 
The additional electronics of the drone include the necessary electronics for flight and communication as well 
as computation boards for processing. Table 7 lists the general electronic parts equipped on the drone. 

Table 7: List of drone electronics systems. 

Electronic part Description 

Radio Receiver The radio receiver receives signals for manual flight. 

Telemetry Radio Module The telemetry radio module covers radio communication with the 
ground control station. 

Battery 
 

The battery powers the drone. 

Power Distribution Hub Circuitry for distributing the power to the drone’s electronic 
equipment. 

 

The intended computation boards equipped on the drone is summarized in Table 8 

Table 8; Computation systems of the drone hardware. 

Computation part Description 

Onboard Computer Unit General onboard computer. Used for all computation and 
applications not comprising the low-level flight controller. 

Flight Controller Unit Computation board running the low-level flight controller. 

 
 

 

Figure 6: Example of OBC hardware platforms. 

 

Raspberry Pi4 B [17]: 

 

Intel NUC7i3DNBE [18]: 

 
 

NVIDIA Jetson Xavier NX [19]: 

 

 
DJI Manifold 2 [41]: 

 
 



23 
 

It should be noted that there is a fast-paced development of computer systems (and sensors) in the marketplace 
for drone components. Consequently, the drone hardware platform needs to be flexible to cope with different 
computation devices. Examples of possible target platforms are shown in Figure 6. The different platform 
represents different trade-offs between processing capability, weight and power consumption. Some platforms 
like the NVIDIA Jetson Xavier provides GPU support applicable to the acceleration of machine learning 
interference applications. This final choice of platform depends on the algorithm development of the WP4 in 
the D4S project. 

4.1.4 Auxiliary parts 
Auxiliary parts cover the drone’s additional payload necessary for the inspection, harvesting, and navigation 
applications. The auxiliary drone parts are summarized in Table 9. 

Table 9: List of possible auxiliary parts of the drone hardware subsystem. 

Axiliary part Description 

Energy Harvester Equipment for harvesting energy from overhead power lines. 

Inspection Sensors Sensors used specifically for the inspection application. 

Environmental Sensors These sensors can sense the local environment e.g., LIDAR sensor, 
stereo/depth-sensing camera, optical flow camera, etc. 

 

For a multi-rotor system, there is a wide range of choices for inspection cameras. From a technical point of 
view, it mainly depends on the payload-carrying capacity of the drone and its electrical performance. A good 
candidate for an inspection camera requires a minimum resolution of 20 megapixels to get a good Ground 
Sampling Distance (GSD). The inspection camera will primarily be used to take still pictures to keep the need 
for data storage reasonable. Other inspection sensors as thermal cameras and radiometric sensors for UV 
irradiance measurements. The exact equipment for the drone with inspection depends on the target for and the 
type of inspection as well as the cost limits for the drone design.  

 Drone software subsystem 
This section introduces the basic software execution environment for the on-board computer (OBC). It 
describes the inspection application (high-level control) from a software point of view. It describes the 
swarming functions (extensions for multi-drone operation. It introduces data objects essential for 
interoperability with the cloud services. 

4.2.1 Software platform support 
Figure 7 shows the software architecture stack running on the high-level controller platform of the drone 
system executed on the OBC hardware module. 

The software architecture is built and executed on the OBC hardware. It is based on the Linux operating system 
patched with specific drivers needed to support peripheral sensors and actuators of the drone. To ease 
portability and to provide a good foundation for multi-site software development the architecture supports 
containerization technology using Docker [16]. The docker container hosts a ROS/ROS2 execution 
environment for user space applications builds on the ROS middleware APIs. To support these applications a 
relevant Python version, as well as C/C++ libraries, are provided as part of the software architecture. Additional 
assisting programs that do not require ROS are supported through standard Linux APIs. 



24 
 

 

Figure 7: Software architecture stack of the drone system. 

 
The Robot Operating System (ROS) creates the foundation for the autonomous inspection application. ROS 
also comes with basic link-layer support for the communication between ROS nodes from the MAVROS [8] 
and MAVlink [9] support packets. Together, these software components constitute the basic ROS 
communication infrastructure. The second version of ROS i.e., ROS2, implements the message-oriented 
middleware support for communication through the Distributed Data Service (DDS) standard provided by the 
Object Management Group (OMG). ROS is an open-source software framework used for managing robot 
systems [10]. ROS can be considered a meta-operating system for robots, because it provides services similar 
to an operating system such as hardware abstraction, low-level device control, implementation of commonly-
used functionality, message passing, and even package management. The main feature of ROS is the reuse of 
code in development, as ROS is a distributed framework of processes that interact with each other through the 
publisher/subscriber communication pattern. This pattern makes it possible for the different nodes to publish 
messages with specific tags called topics, which can subsequently be received by subscribers that have 
subscribed to a particular topic. When a publishing node publishes a message, a subscriber node will request 
a connection over an agreed connection protocol to receive the message. For the nodes to establish this 
connection, a master node also provides lookup information about the nodes. The limitation of the message 
pattern is that it is mainly for group communication, and as such, it has no reply concept implemented. Still, 
ROS overcomes this by introducing services, which operate with a request/reply message pattern. This is 
mainly used for one-to-one communication between nodes. 

The way ROS is structured enables individual development of the different components and decouples it 
greatly, thereby making it possible to focus on one part of the system without affecting another part. Such 
components are usually wrapped in a ROS package, which can be compared to a standard program library. 
ROS packages can also launch a node, which publishes/subscribes to standard topics. Another benefit of ROS 
is that it is multilingual, which means that processes or nodes can communicate regardless of programming 
language assuming it is supported by ROS. For the reasons stated above, it scales remarkably well, when the 
number of nodes or robots increases as the processes are independent in the system. 

With the distributed nature of ROS, it will be simple to integrate several different components into a multi-
drone system, while also making it easier to focus on more crucial components without changing the other 
components too much. This makes it an ideal framework to adopt within the project, as the project also has a 
lot of different components that need to be integrated into one fully-functional system distributed among 
identical drones. It is also open-source, which means there are many communities developing ROS packages 
available for use. 

MAVROS is a ROS package that enables MAVlink messages into the domain of ROS. It acts as a bridge 
between ROS and MAVlink protocol. With this node set up, it will now be possible to communicate with the 
PX4 autopilot and in extension, the drone it is installed on. MAVlink is a lightweight communication protocol 



25 
 

for communication with drones and the components of a drone [9][11]. MAVlink uses a hybrid publish-
subscribe and point-to-point pattern, where data streams are sent/published as topics while configurations are 
point-to-point with retransmission. The key features of MAVlink are that it is designed to be efficient and 
reliable, with only 8 or 14 bytes overhead per packet depending on the version of MAVlink that is used, so it 
is also very suited for applications with limited bandwidth and has methods which can detect packet loss, 
packet corruption, and packet authentication. It also enables offboard and onboard communications while 
scaling up to 255 concurrent systems in the network, which can be the vehicles, ground stations, and so on. 

A major development is currently being undertaken in the robotics software community to develop ROS2 as 
the preferred software framework for future robotics applications. We, therefore, estimate ROS2 to be the final 
base for the multi-drone system of the D4S project. However, no all-needed software packages might be 
upgraded during the project and ROS nodes from ROS and ROS2 should be able to coexist in the multi-drone 
system.   

 

Figure 8: ROS vs. ROS2 APIs. 

Figure 8 illustrates the APIs for ROS communication following the two versions of the software framework. 
It shows the data format (i.e., ROS messages) as well as related transport protocols. ROS uses ROS messages 
for communication between ROS nodes based on a publish-and-subscribe mechanism. The mechanism is 
implemented via XMLRPC for naming and registration services, which is a Remote Procedure Call (RPC) 
protocol that uses XML to encode its calls and HTTP as a transport mechanism. However, the use of RPC 
introduces a risk of limited availability due to its blocking nature in contrast to the more loosely coupled 
publish-subscribe model that does not require simultaneous availability of subsystems. ROS nodes can be 
registered as publishers, subscribers, and service providers. The mechanism uses ROSTCP and ROSUDP for 
transportation, which is based on standard TCP/IP or UDP/IP sockets. There are three standard APIs for a ROS 
node, including XMLRPC API, ROS message transport protocol implementation (ROSTCP and ROSUDP), 
and command line API. 

4.2.2 Application software for inspections 
As shown in Figure 9, there are three types of networks related with the ROS, i.e., single master ROS network 
[12], multi-master ROS network [13], and ROS2 network [14].  In some applications, different ROS networks 
are deployed in combination [15]. A ROS master provides naming and registration services to the rest of the 
nodes in the ROS. The role of the master is to enable individual ROS nodes to locate one another. Once they 
are located by each other, they will communicate peer-to-peer.   



26 
 

 

Figure 9: Illustration of the internal communication in the three types of ROS networks: (a) ROS Single 
Master, (b) ROS Multi-master, and (c) ROS2 network. 

 
In a single master ROS network, only one ROS master is running on a host.  ROS nodes for different functions 
are running on the localhost and remote hosts. Wireless or wired communication is required for communication 
to remote ROS nodes. A single master ROS network uses centralized connectivity management.  Therefore, 
the complete line of communication is prone to failures if the master fails. The Multi-master ROS network 
provides an extension for a single master ROS network to spread the load of the centralized ROS master.  It 
involves multiple ROS masters for connectivity management in the network, e.g., each host has its own ROS 
master (Figure 9). A ROS2 network is different from a ROS network.  The ROS master no longer exists in a 
ROS2 network. A ROS2 network is implemented by using Data Distribution Service (DDS)/Real-Time 
Publisher-Subscriber protocol (RTPS) as its middleware, which provides discovery, message definition, 
message serialization, and publish-subscribe transportation.  ROS2 provides a ROS type of interface on top of 
DDS, which hides most of the complexity of DDS for ROS users.  Access to DDS-specific API is provided 
separately in the case of the need to integrate with the existing DDS system, e.g., eProsima FastRTPS, 
OpenSpliceDDS, and CycloneDDS [14]. FastRTPS is the default middleware implementation in ROS2. 

4.2.3 Swarming software function 
The swarming software function enables multi-drone collaboration for different tasks. It consists of task 
allocation, cooperative path planning, and multi-drone communication. According to different characteristics 



27 
 

of the inspection, two types of task allocations will be developed for the two different applications: railway 
and bridge inspection respectively. The railway task allocation requires railway line detection as input. The 
bridge task allocation requires 3D map data of the inspection target as input.  

The multi-drone communication module supports D2D communication over the wireless mesh network 
(logical IP subnetwork) while providing an interface for ROS messages. ROS includes the discovery function, 
i.e., one drone finds the communication addresses of the other drones, and the synchronization function, i.e., 
share and update information between drones. The prerequisite for multi-drone communication is a WiFi 
network.  

The cooperative path planning module implements three functions including a waypoint guided path plan, a 
collision-free path plan, and a formation fly path plan. The waypoint guided path plan generates the trajectory 
data for the flight controller to pass the provided high-level waypoints, e.g., inspection waypoints. The 
collision-free path plan generates the trajectory (data) for the flight controller to react to encounter obstacles. 
The planner requires depth estimation data of the obstacles, i.e., the distance to the obstacles. The formation 
fly path planning generates the trajectory data for multiple drones to keep fling according to a predefined 
formation. 

 

 

Figure 10: Block diagram for the swarm control functions of the Multi-drone system. 

 
The swarming functions provide general path planning services for a team of drones. The algorithm adopts a 
hierarchical structure. At the bottom layer, each drone uses model-based optimization to find an efficient path 
while avoiding obstacles. The iterative best response method with the formation models is adopted at the 
second layer for multi-drone coordination and formation-fly. At the top layer, the waypoint-guided path 
planning for multiple drones is integrated to provide an abstract layer and to leave interfaces to task-specific 
path planers from other modules. 

4.2.4 Data objects 
To achieve data transfer, it is important to specify data objects and the type of information they are going to 
hold. Data needs to be transferred between services in the cloud, to the drone, and from the drone to the cloud. 



28 
 

Data objects specify Mission data (including inspection tasks), Telemetry data, and inspection Results data. 
Figure 11, Figure 12, and Figure 13 model these data objects, respectively. The data object models are 
extensible and the presentation below is to be considered as a first version of the common D4S data object 
model. 

 

 
Figure 11: Model of the Mission 

Specification data object. 

 
Figure 12: Model of a Telemetry 

Report data object 

 
Figure 13: Model of an 

inspection result data object. 

 

Central elements of the common D4S data object model are described in the following: 

• Mission specification: A mission is defined by a Mission Specification created by the MPO actor. A 
mission has a unique identifier and is allocated to a drone swarm. It is possible to associate a geofence 
polyhedron with a mission that will restrict drones to stay inside the specified zone to only perform 
inspection inside this polyhedron. The polyhedron is defined by a set of GNSS location coordinates. 
The mission is associated with one or more tasks that are ordered in a list.  

• Task specification: Tasks are described by Task Specifications and have unique identifiers. 
Furthermore, tasks are described by an inspection type e.g., bridge (upper) deck inspection, catenary 
cable inspection, etc. A task has a start and an end location defined by GNSS coordinates. Tasks are 
associated with data acquisition specification that describes which sensors to use e.g., RGB camera, 
frequency of data acquisition, speed of the drone during data acquisition, etc. Tasks are delegated to 
the specific drone and each task holds a drone identifier. 

• Telemetry Specification: Drones send telemetry data to the cloud to visualize their location on the map 
and to monitor mission progression. Each drone will send its unique identifier, position in GNSS 
coordinates, velocity, current time, battery status, and flight status. The drones will also send 
information about connection quality to the cloud and with other drones. Telemetry data is described 
by objects in Telemetry Specification.  

• Inspection Result Specification: When a fault is detected, drones will send data describing the fault, 
its location, current time, and image identifier. Image identifier will uniquely describe an image of 
detected fault, which will be sent to the cloud when the connection is strong.  



29 
 

Data objects are formatted using XML [38] or JSON [39] description languages. Both data formatting 
languages allow for human-readable and machine-readable data, which will ease the design and possible future 
troubleshooting procedures. The formats are independent of the programming languages of the application 
software in use and provide an efficient support for the exchange of data between distributed system 
components. Also, XML and JSON support schemas to ease data validation. Both formating languages are 
extensible and support future extensions of data models. 

4.2.5 Software configuration management and build support 
The ability to build a large complex software system as the one running in the multi-drone system needs to be 
under tight control. This section presents considerations for software configuration and build-management for 
the drone software subsystem. 

The building of ROS packages and libraries uses the colcon build tool [44]. colcon replaces the former software 
ament build tools, which were designed as a support for catkin users to handle the migration from ROS version 
1 (ROS-1) to ROS version 2 (ROS-2). ament is an evolution of catkin that address the growing need for side-
by-side installable ROS-1 and ROS-2 packages, which has become a problem due to different targeted Python 
versions. To properly build the software in the Docker engine (cf. Figure 7), it is required to compile the ROS 
libraries as packages in colcon. colcon is a Python build system that utilizes CMake as the main backend, 
which ensures that the ROS middleware is properly linked to generating the target binaries according to the 
specific Docker container in which these are deployed. To do so, colcon is defined under a workspace directory 
that allows for the specific ROS packages to be deployed. In this way, the workspace is ready for the inclusion 
of new ROS packages. Once the colcon packages are progressively created, the whole development can be 
tested with the colcon build command.  

To collaborate on the ROS development aspects of the project, a set of Git software repositories have been 
defined as a common ground for single workspaces. Two main repositories are maintained. First, the platform 
repository contains all necessary operating system, driver, system, and core Linux software to be able to deploy 
the Docker engine of a generic Linux distribution. Second, the OBC repository contains all the ROS 
developments within a common stable version of the latest available drone system functionalities that rely on 
ROS nodes. In this sense, the branching model of Git allows for collaboration across the project ROS 
developers of the different drone subsystems. A master branch will contain the mentioned stable version, with 
possible tags per feature, whereas a development branch contains the current work in progress of specific 
features. Hotfixes can be done as required. The coding style of the OBC repository should follow the ROS 
guidelines for functionality and API programming recommendations of the ROS community. Developed code 
should go through merge requests, where a configuration manager and other developers verify the functionality 
of the code and that its compilation does not break pre-existing code in the repository. In the long term, 
documentation and unit testing should be included in the repository to make guarantee the functionalities of 
the code and provide descriptions for APIs. 

 Communications subsystem 
The autonomous drone inspection system offered by the D4S project offers a communication solution where 
connectivity and service operabilities are provided end-to-end. Thereby, we technically support the entire 
innovation value chain from drone manufacturer, system integrator, inspection operator, data infrastructure 
provides as well as third party information providers. To enable this cluster of innovation globally connectivity 
is a necessity. Our design choice is Internet technology based on IPv6 [42]. By using the new Internet standard, 
we circumvent the shortage of IPv4 addresses and provide a simpler and futureproof network architecture. 
Furthermore, IPv6 provides a set of useful network services such as neighbor discovery [43] and multicast 
listener discovery [44] that ease the implementation of the drone swarm network. 



30 
 

In the following, we will describe the overall network architecture. We argue that the subnetworks that are 
essential parts of the D4S network infrastructure can be classified into three categories: 

• Drone-to-ground communication is the network technology to support the communication between 
individual drones and the ground infrastructure.  

• Drone-to-drone communication support system of drones to form and enables swarming functions 
to be provided. 

• Drone-to-cloud communication enables the exchange of information between information serves 
typically deployed in data centers with an ample amount of computing and storage resources. 

These subnetworks classes will be discussed following the introduction of the overarching network 
architecture.  

4.3.1 Network architecture 
The target network architecture assumes connectivity using IP version 6 (IPv6). Drones will in this regard be 
considered as IP nodes that offer IP host and IP forwarding capabilities. The use of IP at the network layer 
allows the system to operate over heterogeneous networks such as the global Internet. This choice of 
architecture is somewhat challenged in regards to: 

1) LPWAN technologies such as LoRa that have limited support of IP for flexible network topologies, 
given their focus on physical and data link layers mostly;  

2) Access to IPv6 Internet services may in some areas be limited; and  

3) Perimeter protection of partner network sites enforces the use of firewalls that restricts incoming and 
outgoing traffic in different ways being more restrictive towards incoming traffic.  

The targeted network architecture can cope with these challenges (Figure 14) by introducing a public data 
space i.e., the Drones4Energy data broker, and by relying on Domain Name Service (DNS) for mapping of 
unique global domain names to IPv6 addresses. 

 

Figure 14: D4S network architecture. 

 



31 
 

The D4S data broker infrastructure is a network entity residing in a public cloud and is part of the Ground 
Infrastructure cf. D2.5. It offers a platform to exchange data between the drone system e.g., telemetry data and 
data from cloud services such as mission planning data in the form of scheduled telecommand. It is also the 
home network for the drone swarm. This means in practice that the IP addresses of the drones belong to this 
D4S data broker network and traffic sent to the drones will be routed to the data broker network in the global 
internet. A key component of the D4S data broker infrastructure is the database storage that holds mission-
related data. By using this construction, we can circumvent firewalls as requests from cloud services that can 
be initiated from the partner network hosting the service. Likewise, drones and GCS can push their data such 
as telemetry data or inspection images to the database. This significantly simplifies the protocol setup in the 
network architecture.  

From a networking point of view, the multi-drone system (i.e., the drone swarm) is a logical IPv6 subnet. 
When a GCS is present, this node becomes part of the subnet. The GCS can be regarded as a border router 
connecting the drone swarm to the global IPv6 network. Drones should also have the capability to be 
configured as border routers in the case where the underlying network technology to connect to the IPv6 
Internet is different from the WiFi mesh e.g., using LoRa to connect between the remote GCS and the drones 
or providing Internet connectivity through a 5G (or LTE) radio access network. It is further proposed to provide 
a DNS service as part of the D4S data broker infrastructure so individual drones can be addressed by fully 
verbose qualified domain names. A name example for a drone could be drone1.operator.d4s.eu 
indicating this is drone number one belonging to the inspection operator named operator support by the 
service domain d4s.eu. 

The Internet addressing is organized hierarchically with the assumption that the target node is located on the 
network segment defined through the IP address. Because a mobile node, such as D4S inspection drones, will 
often be located outside the home network, the rules for communicating with the node become more 
complicated. To maintain connectivity, the node must have a constant IP address which means that a roaming 
device cannot simply use an address assigned by the nearest network attachment point. Because the problem 
relates to Internet addressing, it cannot be solved strictly at the Network Access layer and requires an extension 
to the Internet layer IP protocol. For this purpose, the Mobile IPv6 extension is described in RFC 6775 [21]. 
The Mobile IPv6 standard solves the addressing problem by associating a care-of address of the mobile node. 
The node retains a permanent address for the home network. A specialized router known as the Home Agent 
(HA), located in the home network, maintains a table that binds the nodes’ current location to their permanent 
addresses. When a given node enters a new network, it is provided with an IPv6 address from this network 
through a stateless or stateful autoconfiguration mechanism. It registers this current location and its new 
address with the HA. The HA then updates the mobility-binding table with the current location of the node. 
When an IPv6 packet addressed to the node arrives on the home network, the packet is encapsulated in another 
IPv6 packet destined to the foreign network where it is delivered to the node. To circumvent triangular routing 
for traffic that flows between the node and its corresponding node, a binding update can be sent to the 
corresponding node to inform about its care-of address. This process is known as route optimization. In case 
the corresponding node does not support route optimization traffic, it will be tunneled from the drone (reverse 
tunnel) back to the HA and then the routers normally through the IPv6 network [21].  

Although the global launch of IPv6 took place in 2012, the majority of sites on today’s Internet are only 
accessible by using IPv4. To be able to access services on the IPv4 network, an IPv4/IPv6 translation service 
is provided as part of the D4S data broker infrastructure. The translation services are offered as NAT64 
gateway support with DNS64 for translating between A and AAAA DNS records. The NAT64 gateway is a 
translator between IPv4 and IPv6 protocols, for which (to properly function) it needs at least one IPv4 address 
and an IPv6 network segment comprising a 32-bit address space [22]. An IPv6 client embeds the IPv4 address 
using a "well-known prefix" when it wishes to communicate with using the host part of the IPv6 network 
segment, resulting in IPv4-embedded IPv6 addresses and sends packets to the resulting address. Note the 



32 
 

translation is not symmetric and for a stateless NAT64, the IPv4 host cannot initiate communication to nodes 
in the D4S network infrastructure. However, stateful NAT64 can support IPv4-initiated communications to a 
subset of the IPv6 hosts through statically configured bindings in the stateful NAT64 [22]. This enables the 
D4S infrastructure to provide services to IPv4-only third parties. The Linux implementation Tayga supports 
stateless NAT64. To provide a stateful NAT64 service the recommendation by the Tayga developer is to route 
TAYGA's IPv4 path through a stateful NAT44, which can be implemented by using IP tables [24].  

As for another connectivity interface, the D4S project will closely monitor the rollout of 5G services in Europe. 
It is expected that 5G services will be offered in urban areas first and that the coverage in rural areas, where 
we find the majority of our inspection sites i.e., bridges and railway lines, will remain modest in the foreseeable 
future. Nevertheless, 5G provides two very interesting innovations for the D4S system. First, the promises of 
providing an ultra-reliable low latency communication (URLLC) service have the potential to offer a command 
and control (C2) channel for the drones. Second, the support for device-to-device communication in 5G enables 
a potential substitution of the WiFi mesh network. However, looking into the deployment plans of European 
mobile operators, these services seem not to be offered commercially in the first wave of 5G deployments. 
More likely we will be able to use 5G as a broadband access network allowing inspection images to be 
uploaded to the D4S data broker infrastructure efficiently. This can be achieved by adding a 5G user equipment 
(UE) modem to individual drones and subscribe to 5G data services from a mobile operator that has sufficient 
mobile network coverage at inspection sites. Taking into account the D4S network architecture a simplified 
protocol stack for a drone in the multi-drone system can be sketched (Figure 15).  

 

Figure 15: Multi-drone protocol stack.  

 
The multi-drone communication system is formed with multiple layers with different protocols for achieving 
different functions. A protocol stack for the multi-drone system is presented in Figure 15 to specify potential 
standard protocols considering the proposed application. It shows a five-layer structure, application layer, 
transport layer, network layer, data link layer, and physical layer. For the drone system, most of the 
communication is handled by the robotic middleware layer, which is part of the application layer. It provides 
APIs for discovery, publish/subscribe mechanisms, and to configure the communication Quality of Service 
(QoS) and the multicast service. Considering the compatibility to robotic middleware, TCP and UDP are 
addressed in the transport layer for either reliable ordered connections or unreliable connections, supported by 
layers below. Also, IP and multicast functionalities are addressed in the network layer. Multicast is involved 

 



33 
 

to support node discovery mechanism in the network as well as general multicast data transmission. To 
maintain reliable and flexible network connectivity, a mesh network protocol is considered in the network 
layer. In the data link and physical layer, different wireless technologies, such as WiFi, LTE, 5G, and LoRa, 
are in the investigation scope.  

The stack provides a data plane view only. Control protocols include protocols for dynamic routing, 
membership management, Internet error and control, neighborhood discovery, and address resolutions. The 
selection of these control protocols is part of the research in the D4S project and it is closely tied with the 
specific use cases of the project. Furthermore, the protocol stack in Figure 15 does not show the special case 
of using MAVLink communication over a point-to-point communication between a drone and the ground 
station. This is the special case of D2G communication described in Section 4.3.3.  

4.3.2 Drone-to-drone communication 
The D2D communication interface considers a wireless mesh setup with the WiFi standard IEEE 802.11s. This 
variant departs from the traditional WiFi mode based on a centralized Access Point (AP) to allow a wireless 
mesh network composed of various ad hoc nodes in a decentralized manner. This permits interconnection of 
drones in a swarm together. The maximum distance between drones in the multi-drone system is limited by 
the range supported by the WiFi standard amendments. We expect this range to extend up to approximately 
200 meters in the rural areas where most of our inspection work will take place.  

A mesh network is a communication network topology in which infrastructure nodes connect directly, 
dynamically, and often non-hierarchically to as many other nodes as possible for multi-hop packet forwarding. 
Various interconnected nodes allow establishing paths to efficiently route data across them and messages pass 
through intermediate nodes from any given source to a specific destination in multiple hops. The benefits of 
mesh networks include a rather rapid installation and low maintenance costs. Besides, mesh networks can add 
robustness and eliminate a single point of failure due to their decentralized network architecture. However, 
wireless mesh networks are prone to link failures due to interference, mobility and may fall short to meet data 
rate demands.  

A few studies of wireless mesh networks for drones have been reported in the literature [25][26][31]. In [25], 
the authors evaluated a framework for an adaptive and mobile wireless mesh network using small drones. The 
network was based on IEEE 802.11s to provide a WiFi mesh network. The IEEE 802.11s amendment has been 
adopted in the IEEE 802.11 standard since 2012 [27]. It brings important methods for bridging the path 
selection to the Medium Access Control (MAC) layer and making PHY data easily available for routing 
optimization. The work demonstrated how each of the mesh nodes acted as a wireless access point and offered 
access to 802.11g network services. This allowed extended communication range between end-points through 
the mesh infrastructure, by using drones as air relay nodes in the mesh [25]. In [56], the authors provided an 
experimental study of two-hop communication using 802.11s mesh system. The study reports on network 
connectivity range up to 500 m with 12 Mbps. However, they also observed that the “mesh extension 802.11s 
is only moderately suited for networking UAVs” as the system only switched to two-hops for 3% of the 
transmitted packets [31]. This urges further research in 802.11 mesh networks for drones. 

Mesh networks dynamically self-organize and self-configure. To achieve this operation, mesh networks run 
discovery and peering protocols to locate other nodes and to manage membership of the mesh network. This 
is handled by a Mesh Peering Management (MPM) mechanism. Essentially, a joining node has to discover the 
operative wireless mesh network by scanning all radio channels and waiting for beacons (passive mode) or by 
issuing beacon requests and awaiting beacon responses (active mode). Direct communication between 
neighbor nodes is allowed only when they are peer mesh nodes. After a mesh discovery, two neighbor mesh 
nodes may agree to establish a mesh peering to each other.  



34 
 

The IEEE 802.11s amendment adds an MPM protocol that facilitates the establishment and closure of the mesh 
peering (Section 6.3.73 of [27]). Generally speaking, MPM request messages are used by a Station 
Management Entity (SME) function to establish, confirm, or close a mesh peering with other peering nodes. 
These peering are managed by the mesh nodes through the MAC Sublayer Management Entity (MLME) 
function. The MPM confirm message reports the results of a request. The MPM indication message is used by 
the MLME to report any peering states with other nodes to the SME. Finally, MPM response messages are 
used to send responses to the MLME specified by the peer node MAC addresses. 

Mesh networks relay messages using either a flooding technique or a routing mechanism. Messages are 
forwarded along a path from a sender to a receiver node. Nodes are making forwarding decisions based on the 
path information of the network. Basic forwarding information consists of the destination mesh node MAC 
address, a next-hop address, a precursor list, and the lifetime of forwarding information. A mesh path selection 
protocol may benefit from combining reactive and proactive elements that enable efficient path selection in a 
wide variety of mesh networks. Although agnostic to any specific routing protocol, the IEEE 802.11s mesh 
network standard promotes the Hybrid Wireless Mesh Protocol (HWMP) as the preferred routing protocol 
(Section 13.10 of [27]). HWMP is a hybrid protocol that combines the flexibility of an on-demand path 
selection process with proactive topology tree extensions. The reactive part is inspired by the Ad Hoc On-
Demand Distance Vector (AODV) protocol [28] adapted for MAC address-based path selection and link metric 
awareness. Two modes of operation exist: 1) the on-demand mode allows mesh nodes to communicate using 
peer-to-peer paths and 2) the proactive tree building mode provides a tree building functionality added to the 
on-demand mode. Path information is maintained by the use of four protocol messages: PREQ (path request), 
PREP (path reply), PERR (path error), and RAAN (root announcement). If a source mesh node needs to find 
a path to a destination mesh node. It broadcasts a PREQ with the path target specified in a list of targets. When 
a mesh node receives a new PREQ, it creates or updates its path information to the originator mesh node and 
propagates the PREQ to its neighbor peer mesh nodes. After creating or updating a path to the originator mesh 
node, the target mesh node sends an individually addressed PREP back to the originator mesh node. If the 
mesh node that received a PREQ is the target mesh node, it sends an individually addressed PREP back to the 
originator mesh node after creating or updating a path to the originator. In the proactive mode, the root mesh 
node periodically propagates RANN messages in the network. The RANN messages are used to disseminate 
path metrics to the root mesh node and do not establish path information. Upon reception of a RANN, each 
mesh node that has created or refreshed a path to the root mesh node sends an individually addressed PREQ 
to the root mesh node via the mesh node from which it received the RANN. A few studies of the use of dynamic 
routing protocols for drone mesh networks have been reported [26][29]. In [26], the authors studied the 
performance of four available mesh routing protocol implementations (open80211s, BATMAN, BATMAN 
Advanced, and OLSR) in the context of swarming applications for drones. The paper evaluated the 
performance of IEEE 802.11s with emphasis on goodput and the transmission delay. In [29] the authors 
simulated the performance of HWMP and suggested an optimization that implemented the proactive tree-based 
routing scheme applied on ground infrastructure, while the reactive routing is initiated by the mobile mesh 
node. The study showed a significant reduction in routing overhead alongside improvements in transmission 
delay and Packet Success Rate (PSR). Other studies confirm that a pure reactive routing scheme may lead to 
significant degradation of network performance in terms of added delay and reduced goodput when attempted 
to be adapted to highly mobile network scenarios such as satellite constellation networks [30]. These protocols 
are briefly summarized in Table 10.  



35 
 

Table 10: Mesh networking control protocols. 

Protocol Type Reactiveness Metrics 

HWMP (802.11s) Hybrid  Hybrid Range. PSR, Delay, Overhead 

BATMAN(-adv) Link State Proactive Goodput, Delay 

OLSR Link State Proactive Goodput, Delay 

AODV  Distance Vector Reactive PSR, Goodput 
 

4.3.3 Drone-to-ground communication 
Commercial-off-the-shelf (COTS) T&C systems are available for controlling individual drones. These are 
typically based on wireless communication using proprietary protocols and carrier frequencies in unlicensed 
bands on 433 MHz or 868 MHz in Europe. While these systems are quite convenient for testing, they are a 
poor choice for a fully integrated D4S system design. 

In the D4S project, we specify two methods for providing D2G communication. 

• LoRa is a LPWAN technology for long-range with high reliability. The downside of LoRa is its 
relatively low data rates supported. LoRa is often connected with the term LoRaWAN, which provides 
a more complete communication solution including medium access control and network layer support, 
which are functions that are also provided by the D4S network architecture. Therefore, the use of the 
LoRaWAN overlay is not needed for D4S.  

• WiFi (IEEE 802.11) is an alternative for providing D2G communication over short distances e.g. up 
to 200 meters in outdoor environments. By using WiFi, it is possible to configure the GCS to be an 
anchor node in the WiFi mesh network to connect to multiple drones of a swarm. The approach makes 
the GCS become a member of the WiFi mesh network discussed in Section 4.3.2. For a point-to-point 
connection between the GCS and individual drones, the GCS may be configured as an access point 
connecting drone in a start topology. 

A Ground Control Station (GCS) is a system that provides the user on the ground the ability to monitor the 
real-time status of the drone during the flight operation. The system connects the PC on and ground and the 
drone during the flight. Telemetry messages are periodically transmitted between the drone and the GCS. For 
the considered cases in the D4S D2C system, a potential candidate technology is Long-Range Radio (LoRa), 
which is defined as a Low Power Wide Area Network (LPWAN), proprietary of Semtech. LoRa utilizes the 
unlicensed Industrial, Scientific, Medical (ISM) frequency bands ranging particularly at 433 MHz, 868 MHz, 
and 915 MHz, but also 2.4 GHz [34]. Such bands allow for rapid developments providing coverages of up to 
10-15 km in unobstructed communication paths.  

LoRa is the physical layer protocol of LoRaWAN [32]. LoRa is designed for long-range communication at the 
expense of low data rates. The long range is achieved by using the LoRa modulation scheme, which is based 
on Chirp Spread Spectrum (CSS). The principle of CSS is to spread the signal out by encoding it using a higher 
rate chip sequence. By spreading the signal out to a larger bandwidth, the signal becomes more robust to 
interference and jamming. The chirp makes it easy to eliminate frequency offsets: “because of the linearity of 
the chirp pules, frequency offsets between the receiver and the transmitter area equivalent to timing offsets” 
[33]. The key feature of the LoRa modulation is high robustness and resistance to multipath and Doppler fading 
as well as signal interference. The robustness and the long range are achieved by the use of variable spreading 
factors (SFs) where the LoRa signal is differently over the channel spectrum. The relation between the symbol 
rate Rs, the channel bandwidth BW, and the spreading factor SF are as follows: 



36 
 

Equation 1 

𝑅𝑅𝑠𝑠 =
𝐵𝐵𝐵𝐵
2𝑆𝑆𝑆𝑆

 

 

The nominal bit rate Rb is given by: 

Equation 2 

𝑅𝑅𝑏𝑏 = 𝑅𝑅𝑠𝑠 𝑆𝑆𝑆𝑆
4

4 + 𝐶𝐶𝐶𝐶
= 𝐵𝐵𝐵𝐵 ∙  

𝑆𝑆𝑆𝑆
2𝑆𝑆𝑆𝑆

 ∙
4

(4 + 𝐶𝐶𝐶𝐶)
 

Where the CR is the coding redundancy factor determining the relative amount of redundancy in Forward Error 
Correction (FEC) code symbols added to the communication. The CR ranges from 1 to 4. If the CR is increased, 
more redundant bits are added to be able to correct more errors. 

The Time-on-air (ToA) metric determines the amount of time before a receiver obtains the LoRa signal. It 
offers a lower limit on the latency the communication channel can provide. The ToA is dominated by the time 
it takes the sender to modulate bit into the channel plus the time it takes the receiver to extract bits. The time 
delay due to signal propagation may be ignored. The ToA can be expressed as follows: 

Equation 3 

𝑇𝑇𝑇𝑇𝑇𝑇 =
2𝑆𝑆𝑆𝑆

𝐵𝐵𝐵𝐵
∙ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Where Nsymbols is the number of symbols transmitted. The computation of the number of symbols differs 
depending on the parameters of the modulation. It is the sum of symbols needed for the protocol preamble, the 
LoRa protocol header, the data payload, and remaining bits for the CRC check value (see [34] for details). 

Figure 16 shows the raw data rate and the ToA value for different spreading factors of LoRa using a CR of 
4/5. 

 

Figure 16: Data rate and Time on Air values for different LoRa spreading factors. 

 
It can be read from the figure that a communication channel requiring a latency of less than 50 ms, which is 



37 
 

the case for the C2 channel the maximum spreading factor to be used is 8 for a bandwidth of 203 kHz. This 
represents a trade-off with the range of the LoRa channel as that longest range is achievable with the highest 
spreading factors. We expect that it is realistic to achieve a range of up to 2 km with a spreading factor of 8 or 
less in urban environments. 

The LoRa protocol operates in the sub-1 GHz band (868 MHz). This is an advantage as the band undergoes 
less attenuation and multipath fading than bands, i.e., 2.4 GHz [11]. The 868 MHz band is an unlicensed 
frequency band, meaning that everyone can operate in it. To have co-existence with different wireless 
technologies, the European Telecommunications Standards Institute (ETSI) has set limits on the transmission 
power and duty cycle restrictions in the frequency bands in Europe. 

When used for T&C with the GCS we specify MAVLink as the messaging protocol for the drones as it allows 
for data framing, packet sequencing, as well as the sender and component identification for data sent of the 
“wire”. Two modes are supported: topic mode and point-to-point mode. In topic mode, the MAVLink 
implements a publish-subscribe system where receiving units choose specific topics to subscribe to. Typical 
examples for this communication mode are all autopilot data streams like position, attitude, etc. The point-to-
point mode requires a target identification to be present. The protocol can support up to 255 robotic vehicles. 
MAVLink is supported on PX4 and QGroundControl. Moreover, the MAVROS software package provides a 
translation between RSO and MAVLink and thereby provides integration of MAVLink in the ROS software 
execution environment. The combination of LoRa, MAVLink, and MAVROS will be a foundation for the 
D2G communication for T&C in the D4S project. 

When the GCS can connect to the Internet it can act as a gateway for the drone system to access cloud services. 
Such connection may be made by using publish mobile data service with 3G/4G or 5G services or through any 
other access technology carrying IP. Interface to the ROS communication can be made possible through the 
ROSbridge software package [3]. The ROSbridge provides an interface the ROS messing layer of the drone 
system. There is a variety of front ends that interface with ROSbridge, including a WebSocket. Alternatively, 
a GRE tunnel [35] of ROS messaged over IPv6 can be established between the GCS and the Data Broker 
network. 

4.3.4 Drone-to-cloud communication 
The system supports two distinct ways of interacting with cloud services. The first method of interaction is via 
web services supported by protocols like HTTP/REST or WebSockets. HTTP/REST is useful for 
communication that inherently needs a stateless information exchange e.g., telemetry reporting whereas 
WebSocket is a stateful protocol where communication happens over a reusable TCP connection. On the other 
hand, HTTP is inherently a stateless protocol. The other approach is to use the message-oriented middleware 
components in ROS. This approach makes use of a proxy function called ROSbridge. The ROSbridge protocol 
allows the sending of JSON formatted data commands to a ROS system [3]. It provides a WebSocket transport 
layer among others. Both methods allow cloud services to be implemented as standard web services that can 
interact with the drone swarm system using standard web transport protocols. 

5 Simulation environment 
Simulations of protocol and algorithms are an utterly important part of the development process for designing, 
integrating, and testing multi-drone systems. There are significant time savings involved by discovering 
problems in software early in the design phase before the software is tested on the intended hardware. 
Simulation environments such as Gazebo [40] allow the testing of software in a virtual world that implements 
drone systems with emulated sensors such as cameras. Gazebo offers the ability to accurately and efficiently 
simulate populations of drones in complex environments.  



38 
 

This section describes first the approach and the structure of a multi-drone simulation setup. Hereafter follows 
a brief introduction to the Gazebo simulation environment.  

 Structure of a multi-drone simulation 
The simulation environment follows the Software-In-The-Loop (SITL) structure and is implemented by the 
simulation software, flight controller firmware, and application ROS package. Application ROS packages refer 
to different function implementations of the system, e.g. inspection, recharging, swarm control, and 
autonomous flight. By using the ROS middleware, ROS packages contain interfaces to the simulation software 
and the flight controller firmware. PX4 is selected for the flight controller firmware, which is the same 
firmware that is deployed on the OBC of the drone. The robot simulation platform Gazebo is used as the 
simulation software. It uses the models and configurations to define the simulation scenarios that emulate the 
behaviors of the drones for achieving different functions in different environments. 

 

Figure 17: Structure of the drone simulator system architecture. 

 
Docker technology is used for the fast deployment of the simulation environment, as shown in the attached 
image. The toolbox of SSH and VNC are used to provide a graphical interface for remote access of users. RViz 
is adopted to visualize the data from the drone. Each docker container represents a simulated drone. For testing 
multi-drone functions, multi-master ROS communication in a local network is established. 



39 
 

 

Figure 18: A Docker-based simulation platform for the multi-drone system.  

 
The simulation environment is designed to be used for validating the data link and software functions with the 
system models and the simulated environment configurations. It provides a safe and close to the real 
environment to test different submodules of the system during the development. Models and configurations 
are defined for different test scenarios. 

 Gazebo environment 
The Gazebo simulation environment provides virtual worlds for different simulation scenarios. This includes 
varied heights of terrain, trees, manmade objects of different kinds. Figure 19 shows an image from the 
simulation environment seen from the drone’s initial perspective (Figure 19a) as well as a general overview of 
the entire simulation world (Figure 19b).  

 

   

 Figure 19: Gazebo views. Left: An example image from the simulation environment in Gazebo is seen from 
the drone’s perspective. Right: Example of Gazebo world map. 

 
A Gazebo “world map” is built using standard components of Gazebo, and consists of houses, trees, a gas 



40 
 

station, telephone poles, and a road. The result of the 3D mapping service on a realistic scene can be imported 
into the Gazebo simulation platform.  

 

 

Figure 20: Example of the Gazebo simulation environment: Modeled by a test facility of UAS center located 
in Hans Christian Andersen Airport. 

 

Figure 20 shows an example of a Gazebo simulation environment that is modeled based on the test facility for 
the drone. The test facility is established in Hans Christian Andersen airport near Odense in Denmark. It 
contains powerlines and a pair of power pylons and can for instance be used to test algorithms for navigating 
and detecting the cable as part of the procedure for autonomous recharging. The simulated environment can 
among other be used to test algorithms for cable detection and grasping. 

6 Test and validation scenarios and environments 
This section describes the approach to testing the multi-drone system. Besides the virtual test environment 
introduced in Section 5, the physical test environments planned for testing are introduced.  

 

Figure 21: Illustration of the test procedure for the function testing in WP5. 

 
 



41 
 

Figure 21 shows the planned workflow for testing the multi-drone system (WP5). The function specification 
(this document) serves as input in the test design process. Test scenarios are generated based on function 
description and the relevant requirements (cf. Section 2.1) are mapped to these scenarios. Test scenarios are 
constructed to make a sufficiently good coverage of the functional requirements. Test scenarios will be related 
to one or more test environments including a simulation environment, indoor testing facility as well as outdoor 
facilities. Test scenarios and checks of the test environment are reviewed before proceeding with the 
preparations for the testing. This preparation includes the integration of software components with the relevant 
target drone platforms as well as the preparation of the GCS to support the testing. The testing produces results 
that document the outcome of the test, Based on these results an assessment of the success of the design and 
the following testing can be done. The entire test flow can subsequently be iterated yielding improved test 
scenarios, test environments, and better integrated multi-drone designs. 

 Test environments 
WP5 of the D4S has access to several drone test facilities that are relevant for the multi-drone system design 
and can be used during the development phase. These environments are briefly introduced below: 

• SDU UAS drone test facility: The test facility is located at Hans Christian Anderson airport near 
Odense in Denmark. It comprises a hangar (Figure 22) for indoor drone flying as well as an outdoor 
facility (Figure 23). Furthermore, it can be permitted to fly in a larger open area at the coastal shore 
and over the sea. 

• AU Deep Tech Hub: An indoor drone cage is available at AU’s facility at Skejby near Aarhus in 
Denmark (Figure 24, left). 

• Mollerup forest: Mollerup forest has been chosen as a location for outdoor drone testing in the 
outskirts of Aarhus, Denmark. The forest is located in a rural area and drone flying with a license is 
permitted. 

 

 

 

 
Figure 22: UAS Test center at Hans Christian Andersen Airport near Odense in Denmark. a) The hangar from 
outside and b) from inside. 

 



42 
 

 

Figure 23: Outdoor test facility at the Hans Christian Andersen Airport. 

 

 

 

 
Figure 24: Drone test environment in Aarhus. Left: Indoor facility at Deep Tech Hub in Aarhus N, Denmark. 
Right: Outdoor flying in an open area near Mollerup forest, Aarhus N. 

   

  

  



43 
 

7 References 
[1] D2.4: “Use-case Document” version 3.5, Drones4Safety, 2021 

[2] D2.5: “Final System Requirements Document” version 1.0, Drones4Safety 2021   

[3] ROSbridge_suite, URL: http://wiki.ros.org/rosbridge_suite 

[4] L. Shi, N. J. Hernández Marcano and R. H. Jacobsen, “A Survey on Multi-unmanned Aerial Vehicle 
Communications for Autonomous Inspections,” 2019 22nd Euromicro Conference on Digital System 
Design (DSD), Kallithea, Greece, 2019, pp. 580-587, doi: 10.1109/DSD.2019.00088 

[5] Timothy Patterson, Sally McClean, Philip Morrow, and Gerard Parr. “Modelling safe landing zone 
detection options to assist in safety critical uav decision making”, Procedia Computer Science, 10:1146– 
1151, 2012. ANT 2012 and MobiWIS 2012. 

[6] Maryam Asadzadeh Kaljahi, Palaiahnakote Shivakumara, Mohd Yamani, Idna Idris, Mohammad 
Hossein Anisi, Tong Lu, Michael Blumenstein, and Noorzaily Mohamed Noor. “An automatic zone 
detection system for safe landing of uavs”, Expert Systems with Applications, 122:319 – 333, 2019. 

[7] Timothy Patterson, Sally McClean, Philip Morrow, Gerard Parr, and Chunbo Luo. “Timely autonomous 
identification of uav safe landing zones”, Image and Vision Computing, 32(9):568 – 578, 2014. 

[8] MAVROS packet information @ ros.org. URL: https://wiki.ros.org/mavros 

[9] MAVLink packet information @ ros.org. URL: http://wiki.ros.org/mavlink 

[10] Morgan Quigley et al. “ROS: an open-source Robot Operating System.” In: vol. 3. Jan. 2009, pp. 1–6. 

[11] A. Koubâa et al. “Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey.” In: IEEE Access 7 
(2019), pp. 87658–87666. 

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,905R.  Wheeler,  A.  Ng,  ROS:  
an  open-source  Robot  Operating  System, Technical Report, 2009. URL:http://stair.stanford.edu. 

[13] A. Tiderko, F. Hoeller, T. Röhling, “The ROS Multimaster Extension for Simplified Deployment of 
Multi-Robot Systems”, 2016. doi:10.1007/978-3-319-26054-9_24.91032 

[14] Y. Maruyama, S. Kato, T. Azumi, “Exploring the performance of ROS2”, Proceedings of the 13th 
International Conference on Embedded Soft-708ware, EMSOFT 2016, Association for Computing 
Machinery, Inc, 2016.709doi:10.1145/2968478.2968502. 

[15] E. Eros, M. Dahl, A. Hanna, A. Albo, P. Falkman, K. Bengtsson,  “Integrated virtual commissioning of 
a ROS2-based collaborative and intelligent  automation  system”,  IEEE  International  Conference  
on913Emerging Technologies and Factory Automation, ETFA, volume 2019-914September, Institute 
of Electrical and Electronics Engineers Inc., 2019,915pp. 407–413. doi:10.1109/ETFA.2019.8869444. 

[16] Docker website, URL: https://www.docker.com/. Accessed 2/3/2021.  

[17] Datasheet: Raspberry Pi 4 Computer Model B, URL: https://datasheets.raspberrypi.org/rpi4/raspberry-
pi-4-product-brief.pdf. Accessed 2/3/2021. 

[18] Intel NUC mini PC, URL: https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html, 
Accessed 2/3/2021. 

[19] NVIDIA Jetson Xavier NX module and developer kit. URL: https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-xavier-nx/. Accessed 2/3/2021. 

[20] MAVlink, http://mavlink.io/en/ 

http://wiki.ros.org/rosbridge_suite
http://stair.stanford.edu/
https://www.docker.com/
https://datasheets.raspberrypi.org/rpi4/raspberry-pi-4-product-brief.pdf
https://datasheets.raspberrypi.org/rpi4/raspberry-pi-4-product-brief.pdf
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
http://mavlink.io/en/


44 
 

[21] C. Perkins, D. Johnson, and J. Arkko, Mobility Support in IPv6, Internet society, RFC 6275, July 2011 

[22] M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful NAT64: Network Address and Protocol 
Translation from IPv6 Clients to IPv4 Servers”, Internet society, RFC 6146, April 2011. 

[23] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum, “DNS64: DNS Extensions for Network 
Address Translation from IPv6 Clients to IPv4 Servers”, Internet Society, RFC 6147, April 2011. 

[24] TAYGA Simple, no-fuss NAT64 for Linux, web site, URL: http://www.litech.org/tayga/. Accessed 04-
03-2021. 

[25] S. Morgenthaler, T. Braun, Z. Zhao, T. Staub, M. Anwander, “UAVnet: A mobile wireless mesh 
network using unmanned aerial vehicles”, 2012 IEEE Globecom Workshops, 2012, pp. 1603–1608. 

[26] J. Pojda, A. Wolff, M. Sbeiti, C. Wietfeld, “Performance analysis of mesh routing protocols for uav 
swarming applications”, 2011 8th International Symposium on Wireless Communication Systems, 2011, 
pp. 317–321. 

[27] Iso/iec/ieee international standard - information technology-telecommunications and information 
exchange between systems local and metropolitan area networks–specific requirements part 11: 
Wireless LAN medium access control (mac) and physical layer (phy) specifications, ISO/IEC/IEEE 
8802-11:2012(E) (Revision of ISO/IEC/IEEE 8802-11-2005 and Amendments) (2012) pp. 1–2798. 

[28] C. Perkins, E. Belding-Royer, S. Das, RFC3561: “Ad Hoc On-Demand Distance Vector (AODV) 
Routing”, RFC 3561, 2003. URL: https://www.rfc-editor.org/rfc/rfc3561.txt. 

[29] C. J. Katila, A. Di Gianni, C. Buratti, R. Verdone, “Routing protocols for video surveillance drones in 
ieee 802.11s wireless mesh networks”, 2017 European Conference on Networks and Communications 
(EuCNC), 2017, pp. 1–5. 

[30] N. J. Hernández Marcano, J. G. F. Nørby, R. H. Jacobsen, “On Ad hoc On-Demand Distance Vector 
Routing in Low Earth Orbit Nanosatellite Constellations”, IEEE Vehicular Technology Conference 
(VTC) 2020, Institute of Electrical and Electronics Engineers Inc., 2020, pp. 1–6. 

[31] E. Yanmaz, S. Hayat, J. Scherer, C. Bettstetter, “Experimental performance analysis of two-hop aerial 
802.11 networks”, 2014 IEEE Wireless Communications and Networking Conference (WCNC), 2014, 
pp. 3118–3123. 

[32] LoRa Alliance. “LoRaWAN, what is it? A technical overview of LoRa and LoRaWAN”, Technical 
Marketing Workgroup 1.0, November 2015. URL: https://lora-alliance.org/resource_hub/what-is-
lorawan/   (visited on 06/3/2021). 

[33] Aloÿs Augustin et al. “A study of LoRa: Long Range & Low Power Networks for the Internet of 
Things”. In: Sensors 16.9 (2016), p. 1466. 

[34] SemTech. “Long range, low power 2.4 GHz Wireless RF Transceiver with ranging capability”, URL: 
https://www.semtech.com/products/wireless-rf/24-ghz-transceivers/sx1280 (accessed 06/03/2021). 

[35] C. Pignataro, R. Bonica, and S. Krishnan, “IPv6 Support for Generic Routing Encapsulation (GRE)”, 
Internet Society, RFC 7676, October 2015. 

[36] D3.1: “Specification of Harvester System”, version 1.0, Drones4Safety, 2020 

[37] “XML 1.0 Specification”. World Wide Web Consortium. Retrieved 12 March 2021. 

[38] T. Bray et al., “The JavaScript Object Notation (JSON) Data Interchange Format”, Internet Society, 
RFC 8259, URL: https://tools.ietf.org/html/rfc8259. Accessed 12 March 2021. 

[39] GAZEBO; “Robost Simulations Made Easy”, URL: http://gazebosim.org/. Accessed 13-03-2021. 

http://www.litech.org/tayga/
https://www.rfc-editor.org/rfc/rfc3561.txt
https://lora-alliance.org/resource_hub/what-is-lorawan/
https://lora-alliance.org/resource_hub/what-is-lorawan/
https://www.semtech.com/products/wireless-rf/24-ghz-transceivers/sx1280
https://tools.ietf.org/html/rfc8259
http://gazebosim.org/


45 
 

[40] DJI Manifold 2 onboard computers. URL: https://www.dji.com/dk/manifold-2. Accessed 13-03-2021. 

[41] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”, Internet Society, RFC 
8200, July 2017. URL: https://tools.ietf.org/html/rfc8200 

[42] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery for IP version 6 (IPv6)”, 
Internet Society, September 2007, URL: https://tools.ietf.org/html/rfc4861 

[43] R. Vida, L. Costa, “Multicast Listener Discovery Version 2 (MLDv2) for IPv6”, Internet Society, RFC 
3810, June 2004, URL: https://tools.ietf.org/html/rfc3810 

[44] Readthedocs, colcon - collective construction, URL: https://colcon.readthedocs.io/en/released/. 
Accessed 25-03-2021. 

https://www.dji.com/dk/manifold-2.%20Accessed%2013-03-2021
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc3810
https://colcon.readthedocs.io/en/released/

	1 Executive Summary
	2 Introduction
	2.1 Linking to system requirements

	3 Concept of operation and functional requirements
	3.1 Overall autonomous mission control
	3.1.1 Preparation phase
	3.1.2 Operation phase
	3.1.3 Conclusion phase

	3.2 Inspection
	3.2.1 Mission initiation model
	3.2.2 Task inspection model

	3.3 Drone to cloud interactions
	3.4 Communication
	3.5 Swarming
	3.6 Cable detection, identification, and grasping
	3.7 Energy harvesting and power
	3.8 Positioning
	3.9 Safe landing operations
	3.10 Cloud service inspection support

	4 Multi-drone system design
	4.1 Drone hardware subsystem
	4.1.1 Drone mechanics
	4.1.2 Drone sensor system
	4.1.3 Drone electronics
	4.1.4 Auxiliary parts

	4.2 Drone software subsystem
	4.2.1 Software platform support
	4.2.2 Application software for inspections
	4.2.3 Swarming software function
	4.2.4 Data objects
	4.2.5 Software configuration management and build support

	4.3 Communications subsystem
	4.3.1 Network architecture
	4.3.2 Drone-to-drone communication
	4.3.3 Drone-to-ground communication
	4.3.4 Drone-to-cloud communication


	5 Simulation environment
	5.1 Structure of a multi-drone simulation
	5.2 Gazebo environment

	6 Test and validation scenarios and environments
	6.1 Test environments

	7 References

