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Executive Summary 
 

The following deliverable is focused on design and specification of Drone inspection as a Service platform 
and is part of the WP6 – Mission control and navigation. It describes the software architecture and services 
for mission control and navigation.   

The document is structured in 4 sections. First section describes the D4S project and how the platform 
development contributes to the project’s main scope. It describes an overall design of the platform. 
Following sections describe various parts of the platform in details. Second section describes a part of the 
platform deployed on the cloud server. Cloud software architecture is divided on backend and frontend and 
described in subsections. Third chapter describes architecture of the software deployed on the drones. Fourth, 
last chapter describes the network communication architecture. Specification of drone swarm software and 
communication will be further developed and tested in WP4 and WP5.      
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1 Introduction  
 

The main scope of the Drones4Safety (D4S) project is to develop a system of autonomous, self-charging, and 
collaborative drones that, inspecting an extensive portion of transportation infrastructures in a continuous 
operation, can increase the safety of the European civil transport network. The project outcomes, in forms of 
software services and hardware drone system, will offer to railway and bridge operators the chance to inspect 
their transportation infrastructure accurately, frequently, and autonomously. 

The main purpose of this document is to provide a description and specification of software services needed 
for autonomous inspection. All the software enabling the infrastructure inspection will be developed as a Drone 
Inspection as a Service platform. The platform includes cloud services for mission control, monitoring, and 
navigation. It also includes web interface, drone operation system and communication between the platform, 
web interface and drones.  

The platform architecture is designed to support modifications and additions, so that old features can be easily 
modified, and new features can be easily added. Modularity is particularly important since we can expect to 
extend the platform with different infrastructure inspection capabilities in the future.  

 

1.1 Platform design 
 

Drone Inspection as a Service (DIaaS) is a cloud-based platform for mission control and autonomous 
navigation of drone systems that allows users to plan inspection missions with a given drone system, execute 
inspection missions by deploying a drone system, monitor the state and location of a drone system, control a 
drone system remotely and safely, and deliver inspection images, sensory data, and on-board analysis results 
to analysis systems (D4S_DES_REQ_0620, D4S_DES_REQ_0630). Figure 1 shows the graphical 
representation of Drone Inspection as a Service platform. 

The platform is designed in three layers consisting of cloud services, the drone swarm, and a network 
facilitating communication between the former two (D4S_DES_REQ_0650). The cloud services are based on 
a microservices approach (D4S_DES_REQ_0660). The drone operating system interacts with the cloud 
services based on a modular distributed message-passing approach. The network handles routing, Quality-of- 
Service etc.  

The design further is divided into a frontend and a backend. The frontend is web-based, relies on the cloud 
services, and allows the user (i.e., the remote operator) to interact with the drone swarm, to visualize its status, 
and to schedule missions. The backend relies also on the cloud and is accessed by both the frontend and by the 
drone swarm, in the latter case mediated through the network.  

For the cloud, services are containerized in a Kubernetes cluster and will include fault detection, inspection 
mission control, swarm fleet management, and data analysis. Microservices approach gives modularity to the 
architecture, so additional services can always be easily integrated. Integration to the platform in automatized 
and the future focus can be at additional features development.  

The drone modules interacting with the cloud through the network are developed as nodes in the ROS/ROS2 
used as the drone operating system.   

Described platform design assures long-endurance, continuous and autonomous inspection campaigns of the 
target infrastructure without direct human intervention (D4S_FUN_REQ_0070). 
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Figure 1 Drone Inspection as a Service platform 

 

2 Cloud Software Architecture  
 

Cloud computing is a paradigm shift in the way computing resources are used and applications are delivered. 
These resources include services, storage, and the network infrastructure along with software applications. 
Cloud computing refers to providing these resources over the internet to the public or an organization. The 
cloud is one of our servers and all the services will be deployed there. Some other cloud solutions will be 
revised in the future as the traffic on the platform increases. GitLab is installed on our premises and will be 
used for development of the Drone Inspection as a Service platform. GitLab is a complete DevOps platform 
and provides toolchain for software development and operations. After the software is integrated to the GitLab 
it will be automatically deployed to the cloud. Jenkins tool will be investigated for continuous deployment. 
Benefit of the platform deployment in the cloud is that it can be reached from anywhere by users and 
developers. Developers contribute through the integrated IDE, locally installed on their computers. The IDE 
choice is left to the developers.    

The system architecture is based on microservices. Microservices structures an application as a collection of 
loosely coupled services. Decomposing an application into smaller services improves modularity and makes 
the application easier to develop and test in parallel and independently by multiple teams. Microservices 
architectural style assures continuous integration and deployment. Continuous integration and deployment will 
be enabled for contributions to the platform. To be able to do that, continuous integration and deployment tools 
are investigated and carefully chosen. CI and CD are set of operating principles, and collection of practices 
that enable application development teams to deliver code changes more frequently and reliably. The 
implementation is known as the CI/CD pipeline. Since these procedures automatize deployment steps, 
developers can focus on meeting the project requirements, code quality and security. Continuous integration 
drives developers to implement minor changes and check in code to GitLab frequently. It is expected that, by 
implementing the continuous integration, the platform development will speed up since all the developers will 
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be able to see and work with the updated code. It leads to the better collaboration between the developers and 
better software quality. Continuous delivery automates the applications delivery to the selected infrastructure 
environment, in this case to the server. Since the platform is deployed only to one server in the beginning, 
foundations for continuous delivery are set up to assure easier platform expansion in the future.  

Services will be integrated to the cloud in containers. Services are containerized using Docker tool and 
deployed using Kubernetes container management tool. Containers offer a logical packaging mechanism in 
which applications or services can be abstracted from the environment in which they run. It provides a 
consistent environment, including software dependencies, specific programming language runtimes, libraries, 
etc., no matter where the container is deployed. Containers virtualize CPU, GPU, memory, storage network 
resources. It provides isolated environments for running services and enables assignment of resources, e.g. 
CPU, GPU, with considering system and service requirements, e.g. reliability, real-time. Docker is popular, 
open-source container format that is supported on many cloud platforms and by Kubernetes system. 
Kubernetes groups containers that make up an application into logical units for easy management and 
discovery.  

Each service in the system provide one functionality and act like an independent application. All the services 
communicate with each other. The main advantage of the microservices architecture is its scalability. Drone 
Inspection as a Service platform will be available in the future to infrastructure inspectors around the world. 
To ensure its architecture will be able to grow without re-writing the code, it is important to set a foundation 
in the beginning. When the load on the platform gets heavier, the platform will be prepared to handle it. In 
case of the increased traffic, the Kubernetes is responsible to make replicas of the service and distribute the 
traffic to all of them.   

All the data will be stored in the database on the cloud. The services will interact with the database and will 
store and retrieve flight plans, tracking information, and inspection images when needed. 

 

2.1 Backend 
 

Every backend capability will be stored in the cloud in the previously mentioned architectural style. Figure 2 
shows the graphical representation of the cloud and its architecture. Services are divided by their 
functionalities. Image processing services are responsible for highly computational image processing and 
machine learning. Safety services are responsible for exceptional situations when the flight is not possible, and 
the drone must land safely. Charging services are responsible for receiving information of the drones’ battery 
level and to plan and command the drones when and where to charge. Mission planning and scheduling 
services are responsible to receive operator’s input on mission goals, plan the mission suitable for current 
weather conditions and time schedule the mission considering the charging circumstances. Weather services 
are responsible to give the weather information around the flying area, communicate with the drone sensors to 
provide the right weather conditions to mission planning and scheduling services. Also, data storage and 
delivery services will take care of database management. Positioning services calculate drones’ position in 
real-time based on the flight plan and support the GNSS position when the communication with the drone 
cannot be established.  Communication between services is orchestrated in Kubernetes.         

2.1.1 Image analysis services 
Image analysis services will include infrastructure recognition software. Machine learning algorithms will be 
developed and trained to classify infrastructure from images (D4S_FUN_REQ_0230). All images received 
from the drone will automatically be categorized by type: bridge component or railway component.  
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Image analysis services will analyze images received from the drones, following requirements of the system. 
In order to develop precise inspection path plans, 3D model of the target infrastructure needs to be created 
(D4S_FUN_REQ_0030). Such 3D model can be created as a geometric mesh of polygons and can be 
constructed based on a set of images taken from different perspectives by an inspection drone using Structure 
from Motion (SfM) method. SfM is a photogrammetric range imaging technique for estimating three-
dimensional structures from two-dimensional image sequences that may be coupled with local motion signals. 
However, the construction of such 3D models for a large-scale operation environment is computational and 
memory heavy and poorly fit with the constrained performance of the on-board computer of the drone. 
Therefore, a service on the cloud for generating the 3D mesh models will be designed and implemented based 
on WP4 results. After the 3D model of bridges, railways and railway overhead lines are created, detailed 
inspection path plan can be calculated by mission planning services.  

2.1.2 Weather services 
Weather services will analyze the weather data from weather stations and determine if the flight area is safe 
for flying. Mission plan will adapt based on the weather information. (D4S_FUN_REQ_0250)      

2.1.3 Safety services 
Safety services will be monitoring the drones’ safety and established connection with drones and between 
drones. It will report to the user interface the strength in connections and safety state. If the safety is 
jeopardized, the drones will be automatically put in a safety state (D4S_FUN_REQ_0110). Depending on the 
situation, the safety state can mean putting the drones into the charging mode, hovering mode, or landing 
them to the ground. The drones should be able determine a safe landing zone using a depth camera and 
simple computer vision techniques.  

2.1.4 Charging services 
Charging services receive near real time data about drones’ battery level. They include time estimation until 
charging will be needed, identification of the charging spots, their availability and estimation of charging time 
until the drones are fully charged (D4S_FUN_REQ_0390). While identifying the charging spot, services will 
take care to provide the information on overhead cables type (high-voltage or transmission lines/railway 
overhead lines) (D4S_FUN_REQ_0140). The battery timing schedule is included in mission planning schedule 
meaning it will be automatically identified when the charging is needed and charging time will be included 
into the inspection mission time (D4S_FUN_REQ_0130). Also, services provide a plan for docking to the 
charging spot. Swarm charging strategies (such as all drones in a swarm charge at the same time or swarms 
will continue with fewer drones) will be investigated in WP5 and supported by this service. 

2.1.5 Mission planning services 
One of the services for mission planning is routing along the infrastructure. To reach the inspection target, 
drones will fly along corridors surrounding infrastructure. The service for routing along the power lines 
identifies power towers on the street map and saves their location into a tree structure as nodes. When starting 
and ending points are chosen on the map, the service identifies two nearest power towers and creates an optimal 
route between them by connecting the nodes from the tree structure. 

There will be more inspection route planning services dependent on inspection needs. Quick bridge inspection 
service will provide the bridge fly-around route for determination of mayor faults and collection of images for 
recreation of the bridge’s 3D model. The route will be planned in order for drones to capture images from 
multiple angles and points of view, so that 3D model recreation is facilitated (D4S_FUN_REQ_0060). Detailed 
bridge inspection service will provide inspection route based on the 3D model of the bridge created by image 
analysis services. Additional services will take care of route planning for the railway tracks inspection. A quick 
inspection route will be based on map and satellite images. If necessary, after the data from this quick 
inspection has been analyzed and 3D models have been created, a detailed inspection path plan will be 
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developed. For every inspection target, the route is created using GPS coordinates saved as nodes in a tree 
structure. The nodes are extracted from the street map and the map is updated based on near real-time satellite 
images (D4S_FUN_REQ_0240). More precise set of nodes are chosen based on infrastructure 3D models 
(D4S_FUN_REQ_0190). The services will take into a consideration safety and flying regulations while 
planning the route (D4S_FUN_REQ_0100). They should receive traffic data and trains’ timetables in order to 
safely coordinate the mission. The drones will fly only in permitted areas and avoid no-fly zones such as 
airports, transformer stations, residential areas...  

2.1.6 Mission scheduling services  
Scheduling services will provide the optimal order of visiting the nodes and time frame for mission completion. 
For scheduling a mission, the service receives a list of GPS coordinates that need to be inspected and finds an 
optimal visiting order for the given number of inspection drones. The services will be further developed to 
take into a consideration the charging plan and all environmental circumstances. Geographical limitations such 
as objects and obstacles will be taken into the consideration and permitted/restricted flight area will be defined 
(D4S_FUN_REQ_0270). The flights will be planned according to flight authorization and procedures 
(D4S_FUN_REQ_0290). Polygons on the map will be created for different flight requirements and restrictions 
and will be included in the path planning algorithm. The services will be able to recalculate the mission plan 
based on new circumstances that may occur during the flight (D4S_FUN_REQ_0220).  

2.1.7 Positioning services 
Positioning services calculate drone’s position based on the previously planned mission and set parameters. 
Services also estimate uncertainties from the real position (D4S_FUN_REQ_0310). We should be able to 
visualize and update the drones’ location on the map in near real time. Since the drones cannot report to the 
cloud each second, this calculation will be used to estimate drones’ real position. Every time the drone 
reports to the cloud, the real location is updated. Services will also receive drones’ real pose and velocity. If 
the difference between the drone’s real position and calculated position is severe, the services will send and 
alert to the web interface (D4S_FUN_REQ_0380).  

2.1.8 Data storage and delivery services 
Data storage and delivery services will take care of virtual asset management. Services will receive telemetry 
data from drones’ sensors and store it in suitable format. PostGIS will be used to store spatial data. PostGIS is 
spatial database extender for PostgreSQL object-relational database. Should the need for a more scalable data 
storage, processing, and delivery service arise, we could work towards integration with a lambada architecture 
consisting of e.g. Storm, Hadoop, and Druid. Also, when demanded, the services will retrieve flight plans, 
tracking information, and inspection images from the database and deliver to the user interface, to image 
analysis services or to any other service requesting. The services will take care of data formatting.  

 

2.2 Frontend 
 

Frontend will be based on the web user interface showing map and all the mission planning capabilities. Figure 
2 shows the graphical representation of the web interface and its communication with the cloud. Web user 
interface is an ideal solution because it allows the operator to access the platform from anywhere in web 
browser, using any device connected to the internet. The interface will have role-based access to distinctive 
features. The roles will differ by user’s ability to interact with the system. Only high-privileged roles will be 
able to control the system while low-privileged roles will have the ability only to monitor the system’s state. 
(D4S_SEC_REQ_0710) The operator will be able to choose the type of the infrastructure to inspect, inspection 
type and select targets on the map. Also, it is possible to decide how many drones will participate in the 
mission. The operator will be able to command the drones to fly to the certain position or submit, change, and 
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remove the flight plan. The interface will show if the submitted plan is feasible (D4S_FUN_REQ_0260). If 
the mission with chosen targets is not feasible, the operator will receive an alert about possible conflicts 
(D4S_FUN_REQ_0360) and suggestion for conflict resolution (D4S_FUN_REQ_0370).  

After setting up the mission requirements, the drones will automatically take-off, inspect the infrastructure, 
recharge when needed and land (D4S_FUN_REQ_0200). In case of the emergency, the safety service will 
provide all the information through the web user interface and the operator will be able to react if needed 
(D4S_FUN_REQ_0340). For example, an emergency could be when the strong wind is blowing and taking 
the drone out of the predetermined path. The system will detect the difference between the drone’s real position 
and planed position and send an alert to the user interface (D4S_FUN_REQ_0380). The operator will then be 
able to decide the course of actions depending on the situation.      

The interface serves also for mission visualisation, monitoring and supervision (D4S_FUN_REQ_0010). It 
will be able to show the drones’ flight simulation, velocity, and position on the map in real-time 
(D4S_FUN_REQ_0300, D4S_FUN_REQ_0320). Also, it will receive a real-time information about air traffic 
and visualise on the map if there is another flying vehicle around (D4S_FUN_REQ_0330). The operator will 
be able to see and track the drones’ position (latitude, longitude, and altitude) and distance from the given 
reference (D4S_FUN_REQ_0120). Each drone will be recognizable under the unique identifier and the 
operator will be able to see the planned mission for individual drone (D4S_FUN_REQ_0280). The interface 
will show the mission schedule with planed mission time and time to go until the end of the mission. The 
operator will see information based on the drones’ sensors readings. The battery level of the drones will be 
visible. Through the interface, the operator will receive data and metadata on detected defects on the 
infrastructure in near real-time (D4S_FUN_REQ_0090). Also, it will be possible to monitor the weather on 
the inspection site. 

After the mission, the operator will be able to see the flight history (flight plans, tracking information and other 
operational data) (D4S_FUN_REQ_0350), and browse the data acquired during the inspection through the 
web user interface (D4S_FUN_REQ_0210).      

 

 
Figure 2 Cloud software architecture and web interface (frontend) communication 
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3 Drone swarm Software Architecture 
 

A swarm of drones will be available for inspection. The operator will be able to choose how many drones 
should participate in the mission. This section describes software deployed on the drones. Further specification 
and tests are part of the WP5.   

Drones will have PX4 autopilot software on board and the software will take care of drones’ low-level control. 
PX4 is an open-source flight control software for drones and other unmanned vehicles. The software provides 
a flexible set of tools for drone developers to share technologies to create tailored solutions for drone 
applications. PX4 provides a standard to deliver drone hardware support and software stack, allowing an 
ecosystem to build and maintain hardware and software in a scalable way. Autopilot software controls the 
drone’s actuators and provides the right inputs to the actuators in order to reach the desired destination. The 
desired destination is calculated in the cloud’s mission planning services. The mission planning on the cloud 
is based on maps, satellite images and 3D models, but it still does not provide a completely safe flight plan.  

In order to execute a safe flight, the drone must be aware of its surroundings in real-time. The local path 
planning software for mission plan adaptations on-board is a solution. It will use sensor data and images from 
the camera to make sure the flying path is safe. ROS middleware platform will be deployed on the on-board 
computer. Image processing for infrastructure faults detection will be deployed on-board. Figure 4 shows drone 
software architecture and its communication with the cloud.  

  
3.1 Fault detection software 

 
The main fault detection system is part of WP4. In addition to this, we also plan to investigate an on-board 
fault detection system with ROS nodes to perform different tasks. Based on supervised and unsupervised DL 
models, ROS nodes will perform following tasks: 

• Running real-time on-board autonomous DL algorithm 
• Detects the faults in different components 
• Extract the image based on the faults and components  
• Running unsupervised DL model for anomaly detection based on Variational Auto Encoders 
• Running AANs for image feature extraction (D4S_TNA_REQ_0590) 
• These features will be based on depth, viewpoints, camera position etc for 3D map generation. 
• Detect the damages to electric traction overhead contact lines infrastructure (D4S_FUN_REQ_0040). 

These damages will be trained as positive classes (WP4-supervised DL method). Track deformation 
(depends on available dataset and can be performed with anomaly detection techniques). Obstacle 
avoidance (any know avoidable obstacles, so supervised DL will be used for known classes). 

• Save the images in folder to root directory. 
 

Then a communication algorithm (it can be a ROS node or built into the fault detection algorithm) between 
single board device (SBD) and cloud server will transfer images based detected components to the cloud 
database. 
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3.1.1 Supervised DL Framework 
On-board fault detection software will be developed in order to automatically recognize faults on bridge and 
railway infrastructure (D4S_FUN_REQ_0020, D4S_FUN_REQ_0080). Deep learning methods will be used 
in the process (D4S_TNA_REQ_0570). Hardware choice for fault detection software deployment highly 
impacts the software’s performance. The software will be developed and tested under the WP4.  

Building and running a DL faults detection algorithm depends on following main steps. 

• Collection, pre analysis and labelling of dataset (For now, labelling is being performed manually but 
in future, we will build an autonomous algorithm for auto-labelling) 

• Application of DL algorithm for training, testing and Evaluation in terms of accuracy (for this step, 
we are using Supercomputer GPU server (for instance Nvidia-Telsa v100)). 

• Selection of suitable SBDs for running the inference in real-time on board of the UAV (on-board 
running the DL model: CUDA enabled SBD can run DL algorithm more efficiently up to 15-20 FPS) 
 

We plan to base the object and fault detection on YOLOv4, which is expected to provide high accuracy 
(D4S_PER_REQ_0410) and comes with the possibility to optimize the network for inference on sufficiently 
computationally strong SBDs. The YOLOv4 model can detect up to 80 different classes per frame 
(D4S_PER_REQ_0420). Figure 3 shows a suggestion of a possible overall structure of our DL based fault 
detection model. 

 
Figure 3 Overall structure of DL based fault detection model 

 
3.1.2 Unsupervised ML Framework  
During inspection for faults detection, drones will also perform anomaly detection by using variational 
autoencoders (D4S_TNA_REQ_0610) and/or Generative Adversarial Networks (D4S_TNA_REQ_600). 
Choosing one model from these unsupervised ML model is based on available dataset. GANs performs better 
as compared to VAEs but it requires a lot of data and tuning. We can use VAE-GAN a hybrid model which 
improve sample quality, diversity, stability, and representation learning e.g. Adversarial Autoencoder (AAE). 
AAE performs better in semi-supervised classification, disentangling style and content of images, 
unsupervised clustering, dimensionality reduction and data visualization. The software will be developed and 
tested under the WP4. 
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3.2 Robot operating system (ROS/ROS2) 
The Robot Operating System (ROS) is a flexible, open source framework for writing robot software. It is a 
collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot 
behavior across a wide variety of robotic platforms. ROS runs on Linux and provides communication solution 
between distributed nodes via the anonymous publish/subscribe mechanism. It will be deployed on the drones 
and software for drones’ navigation and localization should be developed. Also, the drones should be able to 
detect unexpected obstacles in real-time and avoid them (D4S_FUN_REQ_0160). ROS nodes will receive 
instructions from Mission planning services and will send position and orientation information back to the 
cloud. ROS2 solutions will be implemented as the software evolves. For communication between ROS on the 
drone and low-level autopilot PX4, mavros ROS package will be used. It enables communication using 
MAVLink protocol and can be used to communicate with any MAVLink enabled autopilot. For ROS2 
communication with PX4 there is a PX4-FastRTPS bridge.  
 
 
 

 
 

Figure 4 Drone software architecture and cloud communication 

 

    

4 Communication Network Design 
 

While designing a communication network there are more than a few challenges. To achieve autonomous 
flying, extraordinary software algorithms and control solutions have to be developed. Also, without stable 
communication, messages could not be transmitted. For that reason, it is crucial to develop a communication 
network ready to support challenges of autonomous inspection. On the cloud, services must have a reliable 
way of communication between them and with database. User interacts with the system through the web 
interface, so communication between the web interface and services is established. Services also need 
established connection with drones in order to send instructions and receive data (D4S_FUN_REQ_0170).  

Depending on the nature of each service, they use synchronous or asynchronous messaging protocol for 
communication. HTTP is a synchronous protocol. The client sends a request and waits for a response from the 
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service. The key point here is that the protocol (HTTP/HTTPS) is synchronous and the client code can only 
continue its task when it receives the HTTP server response. It seems like a suitable protocol for 
communication between services and web interface. For asynchronous communication, the DDS-RTPS will 
be investigated. ROS2 is a second version of ROS and it is built on top of DDS-RTPS as its middleware. ROS2 
is still evolving, but because of its high potential it will be used as the drone’s operating system. DDS provides 
a publish-subscribe transport which is similar to ROS’s publish-subscribe transport. DDS has a request-
response style transport, which would be like ROS’s service system. This would provide a communication 
with cloud services since DDS API and libraries are available for different programming languages.  

Drones should be connected to the internet using 4G/5G. The connection will be based on IPv6 protocol and 
IPsec standard of protocols. In the future, IPv6 protocol will assure unique IP address for each drone. During 
the development and testing we will consider tunnelling the IPv6 connection through a Wireguard VPN. 
Wireguard VPN will serve as a temporary solution in order to identify drones. To establish the connection 
between services and ROS running on the drone, a suitable bridge server between services’ message protocol 
and type and ROS message protocol and type should be implemented. In the case of ROS2 DDS will be used 
(D4S_DES_REQ_0670).  

The drones should also be able to communicate between each other. Drone-to-drone communication will be 
established using wireless mesh networking communication standards and drone-to-ground communication 
using long-range wireless connection.     

Further and more detailed network communication solutions will be specified, described, and tested in WP5.      
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