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1 Executive Summary 
Deliverable D5.4 reports on research and innovation for the collaborative multi-drone system designed in WP5 
of the Drones4Safety project. It focuses on the documentation of the results from the test and validation 
activities in WP5 with inputs from Task 5.1, 5.2, 5.3, and 5.4. 

The report introduces the drone hardware and the test and validation environments. The drone platforms used 
in the project are custom built from state-of-the-art robotics components. The inspection and harvesting drone 
support the design and validation of autonomous inspection with AI and the energy harvesting module whereas 
the swarming drone prototype platform has been used for the design and validation of collaborative functions 
of the multi drone system. In addition, the report introduces the test and validation environments including 
simulation environments as well as indoor and outdoor test facilities. A mockup of a bridge was built in the 
indoor test facility based on Leonardo da Vinci’s famous bridge design. 

The presentation of the results of the test and validation activities in WP5 are divided in two main categories 
addressing 1) communications of the multi-drone system and 2) algorithms to support swarming functions. 

The deliverable provides an elaborate test of Long-Range radio communication (LoRa) based on the latest 
LoRa chipset operating in the license free 2.45 GHz band. We find that a drone-to-ground communication 
channel of at least 17.6 kbps for distances up to 2.4 km can be supported. Using spreading factors of SF ≤ 8 
can provide upper limits of latency of less than 50 ms. This means that LoRa can be used to support a 
command-and-control (C2) communication channels supporting telemetry data exchange. Drone-to-drone 
communication requires higher data rates than LoRa can support.  

We have investigated the use of Robot Operating System (ROS) and ROS2 communication over WiFi (IEEE 
802.11) operating WiFi in both ad hoc and infrastructure mode. Measurements of the inter process 
communication with varying ROS message sizes shows that ROS2 was able to deliver messages with low 
latency (<30 ms with 75% confidence) for message of up to 1 Kb. In contrast ROS1, showed a markedly 
increase of latency with increasing message size. However, for small message sizes ROS can still support a 
latency <60 ms with 75% confidence in drone-to-drone communication.  

Concerning drone-to-cloud communication we provide results for characterization of 5G during early rollout 
of 5G services in Denmark. 5G is seen as an important technology for offering a data uplink connection to the 
cloud to support the drone system deliver images during inspection mission operation. European 5G rollout 
will be focused on urban areas and the coverage in rural areas where most inspections are foreseen is not well-
studied. Results from measurements in a public 5G network in a rural area of southern Denmark is presented. 
We studied the link latency performance, packet loss, and data throughput in a rural area public 5G network 
in southern part of Denmark comparing a single and multi-connectivity scenario. 

The second part of the test and validation concerns algorithms and methods for autonomous swarm function 
of the multi-drone system. We propose and validate a secure group management protocol that allows drones 
to dynamically join and leave the swarm during the inspection mission. The scheme is based on a cryptographic 
key management scheme exploiting the trust of a centralized group leader (controller) of the swarm. The 
proposed concept is validated through a set of test cases. 

Motion path planning is a key functionality of the multi-drone system. From an architectural point of view, 
motion path planning can be divided into global path planning and inspection path planning. Global path 
planning is provided as a cloud service. It is based on map information and provides a high-level route plan. 
We have studied the global route planning services and compared the well-known A* and RRT* algorithms 
with a simple policy-based swarm control mechanism based on the boid model.  

The ability of the swarm to move together in a coordinated and collision-free manner was studied using a game 
theoretical approach. Test and validation of the proposed method shows that it is possible to achieve 
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coordination and the desired motion path planning of the swarm.  Furthermore, we test and validate a method 
for inspection path planning using sequential optimization. The method is based on a 3D model of the 
inspection targets e.g., a bridge, and considers the constraints of the inspection camera field of view. The 
proposed method can outperform the classical travel salesman optimization algorithm for the inspection 
scenario under consideration. A final motion path planning study investigated the tethered drone system. We 
propose a policy-based method that ensures the drone-collision-avoidance and rope-collision-avoidance. This 
reveals a potential of using tethered drones for inspections in case where flight needs to be restricted for e.g., 
safety reasons. 

The two most dominating tasks of the inspection drones are the inspection task and the charging task. 
Essentially, the inspection task concerns the positioning of the drone at a specific waypoint, with a specific 
angle to the inspection camera, near the targeted surface of the inspection object. When the drone is low on 
battery it will need to abort the inspection to charge. We validate the cloud services from WP6 designed to 
allocate inspection tasks to the multi-drone system. Furthermore, we propose a charging protocol that provides 
an optimal charging schedule for a swarm of drones in case where there is a scarcity of charging point. Our 
mechanism demonstrates that an optimal charging schedule will lead to a reduced time for completing the 
inspection mission. Furthermore, we validate the effect of formation flying using a leader-follower scheme. 
Formation flying is an advantage in linear infrastructure inspection as several drone can position around the 
inspection target and proceed as an integrated using. 

The deliverable concludes with some outlook towards beyond visual line of sight (BVLOS) inspections.  
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2 Introduction 
The design of a system for autonomous inspection with collaborative drones requires a set of key innovations 
resulting from a highly interdisciplinary effort. The goal is to provide a multi-drone system (a.k.a. the drone 
swarm) that can autonomously inspect critical infrastructure in a beyond visual line of sight (BVLOS) 
operations. However, such endeavor requires a set of key innovations resulting from a highly interdisciplinary 
effort. The design of a system for autonomous inspection with collaborative drones needs to progress along a 
sequence of innovation steps (Figure 1) each providing its unique challenges and requiring specific 
technological advancements.  

 

Figure 1: Steps towards autonomous BVLOS inspections with a multi-drone system 

First, a robust and long durability single-drone system must be designed including sensors to support system’s 
perception, onboard computing hardware, low-level control algorithms. Second, communication between 
ground control and the drone needs to support manual piloting as a first step advancing a shift to autonomous 
operation where the pilot lets the autonomous functions on the drone take over. Third, high-level control 
functions are applied to provide functions as obstacle avoidance and decision making concerning e.g., charging 
needs. Fourth, drone-to-drone communication must be established as a foundation of collaborative algorithms 
to be applied to the multi-drone system. Fifth step adds collaborative functions to the multi-drone systems. 
Collaborative functions can involve the multi-drone system only such as formation flying or be in combination 
with services provided by the cloud (cf. WP6) such as global path planning and the overall task allocation of 
a mission. This latter functionality requires drone-to-cloud communication to be established to support the 
exchange of information between the cloud and the multi-drone system. 

From a methodology point of view, different types of verification environments have been used to 
progressively advance the system verification and validation. The multi-drone system has first been validated 
in a simulated environment (Gazebo [18]). In a second stage the system was validated in an indoor controlled 
environment at AU Deep Tech Experimental Hub (AU facility) followed by an outdoor validation of swarm 
operations at Hans Christian Andersen Airport (SDU UAS Test Centre).  

2.1 Purpose and Scope 
Deliverable D5.4 aims at documenting the results from the test and validation activities carried out in T5.6. It 
provides system-level validation for the multi-drone subsystem focusing on validation on the parts needed as 
input to system integration, test bed establishment, validation, and demonstration (WP7). Emphasis for the 
validation is put on the key functionality needed to support the use cases defined in D2.4: Use-case Document 
[17].  

2.2 Document outline 
The deliverable is organized as follows. First, we briefly present the different drone hardware platforms used 
in WP5. Since the ambition for this deliverable is on functional validation of the multi-drone system, we 
provide only few details on the hardware design. Following the hardware description, we will briefly introduce 
the used environment for verification and validations.  
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3 Methods and materials 
In the following we introduce the drone hardware platforms and the test and evaluation environments used in 
design and validation activities in WP5. The WP has been following an iterative design process where 
hardware and software system have been incrementally advanced, and validation has been advancing with an 
increasingly higher complexity of the test environment starting with simulations and progressing to indoor 
testing and concluding with outdoor testing. 

3.1 Drone prototypes 
The inspection and energy harvesting drone has been the key platform used by the UAS team at SDU (Section 
3.1.1). The swarming drone (Section 3.1.2) was used by the AU team for the design and validation of 
collaborative functions of the multi-drone system.  

3.1.1 Inspection and energy harvesting drone 
The drone prototype for navigating and recharging from the power is consists of the following components:  

 MPSoC: Ultra96v2  

 Sensors: mmWave, Camera, and magnetometers  

 Flight controller: CUAV V5+ autopilot 

The first prototype is shown in Figure 2 and encompasses a small airframe for rapid testing one functionality 
at a time. The details of hardware and software drone system architecture is explained in D5.3 [19]. 

 

Figure 2: Hardware design of the drone. 

The drone platform is also integrated with the split-core energy harvester that is developed in WP3 and 
presented in D3.3. Figure 3 shows the drone with the energy harvester while approaching a powerline. 
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Figure 3: Drone with the energy harvester. 

 

3.1.2 Swarming drone prototype 
The drone prototype for validating swarming function is built based on ModalAI VOXL platform and S500 
ARF Frame Kit. Figure 4 shows the hardware details of the drone prototype platform based on the VOXL 
platform. Compared to the inspection and harvesting drone, the ModalAI VOXL platform provides a more 
self-contained low-level flight control allowing design and validation to focus on high level control functions 
needed for the multi-drone system’s collaborative functions. 
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Figure 4: Hardware of swarming drone prototype is based on the ModelAI VOXL platform. 

 

Figure 5 shows two drones on formation flight in an outdoor test field. In the swarming function, onboard WiFi 
provides drone to drone communication. The test and validation are further described in Section 5.4.2. 

 

 

Figure 5: Outdoor formation flight test. 
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3.2 Simulation and validation environments 
Simulation is an essential tool for developing autonomous drone systems. A well-designed simulator makes it 
possible to test algorithms and design drone systems rapidly and safely before attempting to fly in the real 
world. As selected for the Drones4Safety project, Gazebo provides the ability to simulate multiple UAVs 
accurately and efficiently in different outdoor environments [18]. Gazebo offers a robust physics engine, high-
quality graphics, and convenient programmatic and graphical interfaces. Besides the Gazebo simulation 
environment, the PX4 development community also provides the simulation toolchain to allow PX4 flight 
code [22] to control a computer modeled drone in a simulated environment, which provides the same 
interactive interface with this vehicle as users might have with a real vehicle. The PX4 toolchain supports the 
Software-in-the-loop (SITL) simulation, where the flight stack as well as developed algorithms, usually written 
for a particular flight controller, is tested within a modeling environment. 

3.2.1 PX4 SITL with Gazebo 
This section describes the data link of the proposed drone simulation environment. The diagram in Figure 6  
shows a schematic of the SITL simulation environment. Gazebo is used as the simulator [18]. Different parts 
of the system connect with UDP and can be run on either the same computer or another computer in the same 
network. PX4 connects the simulator (Gazebo) using the Gazebo MAVLink API. This API defines a set of 
MAVLink messages that supply sensor data from the simulated world to PX4 and return motor and actuator 
values from the flight code that will be applied to the simulated vehicle. PX4 uses standard MAVLink module 
and MAVLink message set to connect to ground station (QGroundControl) and external developer APIs like 
ROS on each dedicated port. Serial connection is used to connect Joystick controllers via QGroundControl. 

 

Figure 6: PX4 SITL simulation environment using Gazebo as the simulator. 

The multi-drone simulation environment is developed based on the single drone SITL simulation setup. There 
are two types of multi-drone simulation, as shown in Figure 7 and Figure 8. The setup in Figure 7 simulates 
multiple UAVs in a shared Gazebo simulation world. Each drone has its unique PX4 software but is controlled 
by the same ROS middleware by using different ROS messages for different drones. QGroundControl as a 
ground control station is optionally used to monitor the status of all connected drones. 
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Figure 7: PX4 multi-UAV SITL simulation environment. The example simulates a formation flight with two 
drones using a leader-follower algorithm design. 

In Figure 8 a second multi-drone simulation environment, which is closer to the real software deployment 
scenario for a multi-UAV system. Each UAV in this simulation has been assigned a Docker container with an 
independent container distro. Containers are connected in a local virtual IP network. The drone software in the 
container communicates with each other using ROS middleware through TCP/IP (Multi-ROS-Master 
communication). Each Docker container provides a graphical user interface based on VNC for users to monitor 
and configure the simulation. As shown in the right side of Figure 8 a camera view of the simulated world and 
a visualization of the obstacle perception of two drones are presented. 

 

 

Figure 8: PX4 multi-drone SITL simulation environment. 
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3.2.2 Gazebo simulation environments mimicking the UAS test facility 
To complement the physical testing, we created a Gazebo simulation environment based on the test location 
at the Hans Christian Andersen Airport, Odense. The terrain was photograted at the test site and stitched 
together using photogrammetry, with size and height of the setup being measured. This data was then taken to 
reproduce a size-accurate and positionally-accurate environment. To increase the realism of the environment, 
weather conditions such as Wind and sky boxes were also implemented using plugins incorporated into the 
Gazebo software, proving invaluable during system verification. 

a) 

 
 

b)

 

 
Figure 9: (Left) Simulation environment with test setup, (right) composed orthomosaic with absolute 

orientation, location, and size metadata, 

Additionally, the CAD models for the drone reflecting an earlier iteration of the drone shown in Figure 10, 
were also processed for use within the Gazebo simulator, ensuring the performance and weight of the drone 
accurately represented the physical counterpart. 

 

 

Figure 10: Prototype frame imported into the simulation environment. 
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3.2.3 Indoor drone testing facility 
We built up an indoor test environment for functional validation. For Indoor localization, we use either a 
VICON motion capture system or onboard Visual Inertial Odometry (VIO) system. Figure 11 shows the indoor 
test environment for validating the formation flight function.  

 

Figure 11: Indoor test facility for formation flight function validation. 

Figure 12 shows another test environment with a mockup bridge for validating the inspection motion planning 
function. In the above two test environments, WiFi equipment is provided for supporting drone to drone 
communication and drone to ground control station communication. 

 

Figure 12: Bridge mockup built in the indoor test environment. 

Autonomous test the obstacle avoidance function with one drone in the indoor test environment. In the example 
below (Figure 13) the obstacle avoidance function of a single drone was tested. The drone estimates its state 
based on onboard sensors using visual-inertial odometry tracking software and detects obstacles using an Intel 
Realsense D435 RGB-D camera. Flight experiments were conducted to validate the obstacle avoidance 
algorithm. In the video example, the drone first switches to offboard mode and flies to its initial waypoint in 
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front of the obstacle. A goal waypoint is then set behind the obstacle. The drone moves past the obstacle 
following a collision free trajectory.  

 

Figure 13: Example from the validation of obstacle avoidance algorithm. 

The scenario depicted in Figure 13 showed the drone autonomously approaching and brakes before an obstacle 
represented by the blue frame. Given a guiding waypoint behind the obstacle, the drone was able to calculate 
an alternative path and navigate past the obstacle. 

3.2.4 Outdoor drone testing facility 
Outdoor powerline testing environments were deployed at SDU UAS Test Centre in Odense, Denmark for 
powerline inspections using drones. At approximately 10 m tall and 35 m long, the outdoor power line 
environment is a small-scale 3-phase energized powerline setup constructed from previously deployed energy 
grid parts. Figure 14 shows the setup; cable diameters are ø20 mm for the energized segments and ø10 mm for 
the ground segment. 
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Figure 14: Powerline test setup at SDU UAS Test Center, Hans Christian Andersen Airport, Odense. 

4 Communication performance 
Connectivity is essential for the performance and success of the multi-drone inspection missions. Deliverable 
D5.1 “Specification of the multi-drone system” of the Drones4Safety project described the overall concept of 
operation of the multi-drone inspection and introduced the supporting communication infrastructure [1]. The 
system architecture distinguishes between three modes of communication each with a set of unique 
communication requirements. 

 

Figure 15: Drones4Safety communication infrastructure. 

The swarm of drones has the capability of collaborating with cloud services. Data exchange between drones 
and cloud service are primarily achieved through long range wireless communication based in LoRa and 
secondary through a public mobile network infrastructure. LoRa is primarily used as the inspection mission 
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operator, i.e., the drone operator, can be fully in control with the network coverage. Mobile networks provide 
a good opportunity for connectivity but network coverage, in particular in rural areas, cannot be guaranteed.  

The validation of the communication in WP5 has focused on the assessment of LoRa as drone-to-ground 
communication technology for BVLOS operation. In addition, we have studied the use of 5G mobile 
communication currently being rolled out in many European countries. In this regard, our aim has been on 
5G’s capability to support drone-to-cloud communication. 

4.1 Long Range radio (LoRa) 
LoRa is usually deployed with Long Range Wide Area Network (LoRaWAN) for the link layer with 
contention-based Aloha Medium Access Control (MAC), where there exist duty cycle regulations of 0.1-1% 
for the end nodes’ transmissions in the previous bands, thus diminishing the throughput even more [13]. To 
alleviate these known constraints, a more recent LoRa chipset by Semtech has been released in the 2.4 GHz 
ISM [14], where typically WiFi is deployed, providing considerable larger data rates than the sub-1 GHz 
counterparts, with no duty cycle limitation to achieve full rates, and aiming to keep the same range. Such 
developments aiming at new market segments raise again the question of feasible reliable LoRa C2 links for 
drone applications in terms of range, application throughput and latency in rural areas. In contrast to LoRa 
operating at sub-gigahertz frequencies, the 2.4 GHz LoRa is not subject to duty-cycle requirements. Another 
advantage of LoRa is its resistance to interference from other communication devices using the free ISM 
frequency band. A tradeoff between range and data rate exists. On the one hand we want the drones to have 
reliable (and low latency) communication on a long range and on the other hand we would like a reasonably 
high data rate to be able to transmit video streams from the drones to an operator or a mission control entity. 
This poses the question on practically achievable performance of LoRa. 

4.1.1 Experimental setup 
To validate the performance of LoRa several outdoor experiments was performed in a rural setting as sketched 
in Figure 16. Our measurement was carried in the Mollerup forest area near Aarhus, Denmark (Figure 17). 
This area considers plains, low hills, and very sparsely distributed trees, that represent typical rural areas where 
infrastructure, such as power lines, could be inspected.  

a) 

 

b)

 

 

Figure 16: a) Sketch of the LoRa outdoor testing setup. b) Picture of the drone platform carrying the LoRa 
module used in the testing. 
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Figure 17: Pictures from the field experiments with LoRa testing in Mollerup Forest. The forest has a mix of 
open grass areas and more dense areas with vegetation. 

 

Drone setup, data-collection scripts, parameter space and test descriptions, with as many pictures and diagrams 
as possible. Mention that the setup is challenging because of battery lifetime (1 battery charge = 1 flight).  

The setup for the test is as follows: The LoRa transmitter is connected through Serial Peripheral Interface (SPI) 
to a Raspberry Pi 4 mounted on a drone assembled with COTS components. The LoRa receiver is connected 
through USB Interface to a personal computer. The drone has been equipped with a PX4 flight controller using 
the Raspberry Pi as its On-Board Computer (OBC), and remote controller interface in 433 MHz for manual 
control of a drone pilot.  

The LoRa module is equipped with two Inverted-F antennas but for this experiment only one of them is used. 
It is expected that performance will improve if using an antenna switching technique such as best received 
RSSI. The antennas are omnidirectional so no special precautions have been made for placement of the 
modules while during the tests. 
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Data collection scripts have been made in Python to carry out the measurement using the Host Controller 
Interface (HCI). To simulate data transmissions of a drone, a MAVLink message with a length of 40 bytes was 
used for the measurements. To streamline the measurements and get most results from the limited battery 
capacity, a script was used to easily switch between different spreading factors while the drone was in the air. 
The Python scripts on the drone were executed through a SSH connection using a mobile phone's WiFi 
hotspot.    

For the path loss measurements, the drone uses a script that sends an unlimited amount of MAVLink messages 
while the personal computer is using a script to receive the messages and log the statistics. The following 
information is stored in a CSV file which can be used for further analyzing payload, RSSI, SNR and whether 
a CRC error has occurred or not.  

To do the RTT measurements, a script is used on the personal computer that transmits an unlimited 
number of messages that requires the receiver to respond with acknowledgement messages of whether 
the transmissions went successful or not. The RTT timer is started right before the HCI message is 
sent that requests the LoRa Module to transmit a packet. The timer is stopped as soon as the HCI 
message containing the response message is received. A window timer is used to determine the 
amount of time to wait before a packet is assumed lost. The script generates a CSV file that stores the 
RTT and in case a TIMEOUT, NACK or CRC occurs. 

4.1.2 Analysis and results 
The LoRa signal gets attenuated due to a path loss when going through the wireless medium. Fading and 
shadowing effects due to nearby scatterers reduce the Signal to Interference plus Noise Ratio (SINR) and 
introduce delays at the receiver. We define the transmitter to receiver net signal loss in the link budget as: 

𝑃𝐿ሺ𝑑ሻ ൌ 𝑃் െ 𝑃ோሺ𝑑ሻ െ  𝐺் െ 𝐺ோ 

Our path loss measurements account for the transmitter power PTX, the received power PRXሺdሻ dependent on 
the distance, and misalignment from the maximum antenna gains, GTX, GRX at an angle ϴ. For a given frequency, 
an empirical path loss model is dependent only on the distance between transmitter, receiver, propagation 
conditions, and related terrain geometry. Different path loss models can be applied for any given scenario. All 
quantities PTX, PRX, GTX, and GRX are measured in decibel (dB). 

Figure 18 shows measured path loss for distances of 400 m to 2.4 km. 
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Figure 18: Pathloss measurements at different drone heights: 5 m, 10 m, 15 m, and 20 m. 

  

4.1.2.1 Single Slope Path Loss model  
In the case of a single slope, the path loss is given by: 

𝑃𝐿ሺ𝑑ሻ ൌ 𝑃𝐿  10 γ log ቀ
ௗ

ௗబ
ቁ  𝑋ఙ   where   𝑑  𝑑 

PL0 is the initial path loss at a given distance d0 ൌ 1 m. PL0 may be calculated from the Free Space Loss (FSL) 
model as:  

𝑃𝐿 ൌ 𝐹𝑆𝐿ሺ𝑑, 𝑘𝑚ሻ ൌ 92.45  20 logሺ𝑓 ு௭ሻ  20log ሺ𝑑, 𝑘𝑚ሻ 

In this equation, fGHz is the frequency of the transmitting signal in GHz, and d0, km the distance measured in 
km.  is the path loss exponent where higher values of γ > 2 represents rural to urban scenarios with large signal 
strength loss, and of where low values γ ≤ 2 represents path loss in a guided medium up to free space (γ = 0). 
Xσ is Gaussian random variable of zero mean and variance σ2. 

In Figure 18, the free space path loss model is shown alongside the measurements. For the measurements a 
least square fit provides the path loss exponent. As can be seen, the path loss exponents fall into the category 
0 ≤ γ ≤ 2 showing that the LoRa communication is partly guided by the environment.  

For comparison, Figure 18 also shows the calculated pathloss based on the COST-Hata and the Walfisch-
Bertoni models. The COST-Hata Model This model accepts physical barriers between transmitter and receiver 
antennas as homogeny. Because of the frequency band limitation of the more commonly used Okumura-Hata 
model (150-1500 MHz), the original model was recreated later to address the frequency band of 1500-2000 
MHz hereafter referred to as the COST 231 extension to the Hata model i.e., COST-Hata model [24]. The 
COST-Hata model is considered to be valid for frequencies between 1.5-2 GHz, heights between 30 m < hTX 
< 200 m, 1 m < hRX < 10 m, and distances ranging from 1-20 km. 

4.1.2.2 Two-Ray Ground Reflection Model  
In some cases, the phase difference between the Line of Sight (LOS) component and the reflected one is not 
negligible. The two-ray model is used when a single ground reflection dominates the multipath effect for the 
propagation radio wave. In this setting the LOS component, modeled by the free-space propagation loss model, 
is superimposed by a reflected wave considering the reflection coefficient and the phase shift of the reflected 
wave [24].  

Diffraction models: The Walfisch-Bertoni model considers diffraction from rooftops and building in a cellular 
system [24]. The model assumes that the transmitted wave propagates based on free-space propagation and is 
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then reradiated by the scatterer with a reduced transmit power. Figure 16 shows the Walfish-Bertoni path loss 
model alongside the measured  

An elaborate propagation model combines the above approaches and considers the superposition of all rays 
with non-negligible contributions to the resulting signal and the receiver. This concerns a combination of LOS, 
reflected and diffracted components. As the different components may weight differently at different distances 
and is often desirable to model the path loss as a piecewise linear (in dB scale) function accounting allowing 
parameter models to be adjusted in different distance intervals. This is known as the piecewise linear path loss 
model shown with the two-ray model in Figure 18.  

4.1.2.3 Communication delay  
To support a C2 channel the communication delay is of utter importance. LoRa was originally not designed to 
be a low-latency communication channel. The robustness of the channel was given priority. The use of 
different spreading factors with LoRa achieves this robustness by spreading the signal over time. 
Consequently, use of higher spreading factors yields longer communication delay. To assess the potential of 
use LoRa communication for low-latency communication was verified in the experiments described above. 
Figure 19 shows the cumulative density function plots of the round-trip-time at different spreading factors.  

 

Figure 19: Measured RTT for LoRa communication at different spreading factors SF: 7, 10 and 12. The 
drone height was 20 m in all experiments. 

  

As can be seen from Figure 19, LoRa at the low spreading factors can provide a below 50 ms latency as 
required by the C2 channel with very high probability. For high spreading factors SF > 9 this a sufficiently 
low delay cannot be obtained to support C2. Nevertheless, LoRa is still applicable for telemetry reporting. 
Based on our validation of LoRa we conclude that C2 can be supported with spreading factors of SF = 8 and 
below.  

Finally, achievable data rates were measured through a series of goodput measurements. The goodput measures 
the amount of data that can be transmitted to an application running over the wireless channel and thereby 
disregards protocol overhead. Figure 20 shows the goodput measurements.  
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Figure 20: Measured goodput for different spreading factors. 

As expected from LoRa communication the goodput drops as the spreading factor increases. We estimate that 
for telemetry data a minimum goodput data rate of 17.6 kbps for a team of 4 collaborative drones working [8]. 
This should be compared to the One-way goodput measurement of Figure 20. Again, we conclude that 
spreading factors SF=8 or below are suitable for a low-data rate drone communication channel to support 
telemetry. 

4.2 WiFi and wireless networking 
The exchange of information between drones i.e., the drone-to-drone communication requires higher data rates 
to be supported that can be provided by LoRa [25]. In WP5, we choose WiFi based in the IEEE802.11 standard 
for the inter-drone communication. In this section, the present results of the analysis of using ROS and ROS2 
communication over WiFi including a study of its performance. 

4.2.1 WiFi and Multi-master ROS network 
As shown in Figure 21, remote inter-process communication is evaluated by deploying ROS/ROS2 publisher 
and subscriber respectively in two machines connected using WiFi, Intel NUC8i3 with 16 GB RAM and 
integrated wireless module (Intel Wireless-AC 9560) and Intel NUC8i5 with 16 GB RAM and integrated 
wireless module (Intel Wireless-AC 9560). The influence of changing WiFi mode, direct link using WiFi ad-
hoc mode (Ubuntu WiFi configuration) and link passing through WiFi access point with default WiFi mode 
(Ubuntu WiFi configuration), are measured. Measurements are taken in a common indoor environment in the 
presence of WiFi signals from other networks. Two machines are put on the table with 1 m distance. To avoid 
inaccurate system synchronization between two machines, the latency is measured based on a round trip, of 
which the return trip is implemented by a direct C++ socket communication.  
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Figure 21: Experiment configuration for remote inter-process communication. 

Figure 3 represents the data of remote interprocess communication from 120 messages of per message 
size.  ROS2 Foxy shows a more stable latency then ROS Melodic on small message size, Figure 22, a) and b). 
However, reversed results are observed when using large message sizes, especially on the size of 4M byte, 
(Figure 22, c and d). 

 

Figure 22: ROS and ROS2 remote interprocess communication with default configuration using WiFi access 
point mode. 

Figure 23 shows the performance difference between the WiFi ad-hoc mode and the default access point 
mode.  In the case of ROS Melodic, WiFi ad-hoc mode provides a more stable and shorter latency than using 
a WiFi access point on small message sizes. 
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Figure 23: Remote interprocess communication using either WiFi ad-hoc mode or access point mode. 

4.3 Communication with Cloud services 
As can be seen in the Drones4Safety network architecture (Figure 15), 5G mobile communication is identified 
as a key enabling technology for connecting the multi-drone system to the Internet and cloud services [1]. To 
assess the potential of 5G for drone-to-cloud communication, we performed field test experiments to validate 
the current potential of 5G mobile communication to support autonomous inspections with drones. 

4.3.1 5G communication service 
Fifth generation mobile (5G) technology will be able to provide higher capacity, higher data rates, lower 
latency, and increased energy efficiency than previous generations of mobile cellular technologies. Therefore, 
5G is expected to be an enabler for more flexible and efficient solutions for vehicles systems such as 
autonomous drones. With the new capabilities of 5G, telecom operators strive to improve the user experience 
of existing mobile customers, while enabling cloud connectivity and targeting new business opportunities and 
use cases such as robot and drone control [27], manufacturing, as well as agriculture [28]. To achieve this, the 
main design development of 5G has focused on bringing down communication latencies to the millisecond 
level to support real-time wireless control loops while also improving the overall network capacity to allow 
scaling of the networks.  

Presently, 5G is being rolled out in countries across the globe and consumers can already purchase mobile 
phone subscriptions which give access to the new services. However, it is still early days for 5G, and the 
technology is still immature. 5G deployment is done in a rolling manner, where features are piecemeal rolled 
out as they become available. This means the current early 5G systems might not yet provide many of the 
promised features and benefits, which will come later with Rel.16 (expected to be commercially available by 
the end of 2023) with ultra-low latency features, and Rel.17, which will enable positioning over 5G.  

In collaboration with Aalborg University and the EU project Internet of Farms 2020 (IoF2020), where Aarhus 
University is a partner, a series of 5G connectivity experiments were conducted to characterize the network 
coverage and network performance during the Danish 5G roll-out phase. Rural areas in Denmark were targets 
for this investigation as this was a better match for both the Drones4Energy and the IoF2020 project. For the 
testing we were using TDC’s public 5G infrastructure.  

4.3.1.1 Experimental setup 
Aalborg University contributed with specific 5G Quality of Service (QoS) test equipment. Tests were 
conducted based on the previous cellular network characterization methodology, while the dedicated 
equipment was built on top of the reference design originally designed for 5G Industry 4.0 manufacturing 
applications. To empirically assess the 5G network capabilities, the primary focus was the implementation of 
a measurement device able to monitor and record the relevant communication QoS parameters: link latency, 
Packet Error Rate (PER), and throughput (data rate). For further reference, the device was designed to also 
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record timing, Global Positioning System (GPS) position, and 5G signal strength (as received power in dBm), 
and 5G signal quality in terms of Signal-to-Noise Ratio (SNR). Recording and analyzing all these parameters 
over a specific measurement route, allows for direct assessment of the 5G capabilities for services in each 
area.  

The 5G measurement setup was further designed to support advanced multi-connectivity, which is a 
connectivity solution based on hardware duplication that might be of interest for autonomous drones requiring 
reliable wireless support for their industrial applications. Multi-connectivity is implemented by considering 
two 5G network modem interfaces (instead of one as is normally done) as user equipment to increase the 
availability and reliability of the 5G connection by using the best of the two or a combination of both. Multi-
connectivity schemes rely on the uncorrelation in time and space of poor network performances or failures on 
the different interfaces. This means than when one of the interfaces might be experiencing long delays or 
transmitting low data due to high number of connected users, long distance to the serving cell, or is performing 
a cell change; the other might be connected to a nearer different cell and, therefore experiencing a better 
connection with better latency and/or higher data rate transmissions.  

The scenario selected for the data-driven 5G trial took place in a rural area near Padborg, in the south of 
Denmark. In this area, there was 5G coverage from the Danish telecom operator TDC. This 5G network was 
selected since TDC has already reported 5G coverage in 98.4% of the country, including main rural areas. At 
the moment of the trial, TDC’s public 5G network was an early deployment of 5G Non-Stand Alone (NSA), 
operating in Time Division Duplex (TDD) mode over 100 MHz bandwidth in the 700 MHz band, using 1800 
MHz as 4G LTE anchor band. This means that the network was not yet able to provide the full feature set of 
5G. As the trial was done right after the initial rollouts, in June 2021, no impact from other simultaneously 
connected devices was expected since not many TDC public network users had taken up 5G services yet. To 
evaluate the 5G QoS parameters in the test scenario, the measurement route for a ground vehicle (a tractor) 
was defined. The route was planned to include a mixture of realistic environments with both on- and off-road 
driving. The roads were primarily small to medium size country roads, while the off-road driving consists of 
driving on an open agricultural field and inside a forest confirming the availability of 5G coverage throughout 
most of the track. An average vehicle speed of 40-50 km/h was used when on-road and approximately 10 km/h 
when off-road.  

The baseline platform is an ARM-based Gateworks GW6405 industrial computer, chosen due to its small size, 
support for up to four mini-PCIe extension cards and integrated GPS hardware with Pulse Per Second (PPS). 
This GPS hardware allows recording the position of any given 5G measurement sample and having easy access 
to an accurate time source for synchronization. By using the LinuxPPS API it is possible to synchronize the 
industrial computer clock with down to 10-100 μs accuracy. The computer board is housed in a metal enclosure 
and equipped with 8 omnidirectional antennas, feeding two Simcom SIM8300G-m2 cellular modems (with 
four antenna ports each) installed in the GW6405’s mini-PCIe slots through an M.2 to mini-PCIe converter 
board. The SIM8300G-m2 is chosen based on recommendations from TDC as it supports both their 4G and 
5G sub-6 GHz bands. A GPS antenna is connected to the GW6405 and routed to the roof of the vehicle.  

4.3.1.2 Analysis and results 
The link latency performance was individually evaluated for DL and UL in terms of OWD and combined in 
terms of RTT. Figure 24 displays the CCDF of DL and UL OWD. It illustrates a very similar behavior for both 
modem 1 and modem 2, with a median (10-0.5) DL OWD of 11.5 ms and 12.1 ms, respectively and with a DL 
OWD lower than 100 ms in 99.3% of the cases (Figure 24a). The tails of the distributions are slightly different 
between modem 1 and modem 2, reaching in both cases a maximum DL OWD of approximately 0.5 s at the 
99.999% (1 – 10-5) level. As displayed, the multi-connectivity scheme based on the selection of the best 
interface (min) leads to an improved DL OWD, with a median DL OWD of 11.3 ms, and a much more 
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deterministic tail, which contained DL latency lower than 100 ms in 99.9% (1 – 10-3) of the cases. With multi-
connectivity, at the 99.999% level, the maximum DL OWD was 219.1 ms. 

a)

 
 

b)

 

Figure 24: Empirical CCDF of DL OWD (left) and UL OWD (right) for modem 1, modem 2 and latency-
optimized multi-connectivity. 

The UL OWD performance results (Figure 24b). UL latency is larger than DL latency due to the fact that in 
5G networks, DL transmissions are scheduled almost instantaneously at the base station, while UL 
communications, initiated by the 5G end device, need to wait for the base station to perform resource allocation 
and issue an UL grant permission before the data can be transmitted. Both modem 1 and modem 2 exhibited a 
similar median UL OWD of 11.8 ms and 13.0 ms, respectively, bounded by 100 ms in approximately 99.5% 
of the cases. The large tails indicated that in 0.1% (10−3) of the cases, the UL OWD was larger than 550 ms 
for modem 1, and 287.4 ms for modem 2. The multi-connectivity gains in UL OWD are smaller than in the 
DL OWD case. The UL OWD distribution in the multi-connectivity case showed 11.1 ms median value, with 
a tail that reaches 100 ms at the 99.9% (1 − 10−3) level and exceeds 0.5 s at the 99.999% level. 

Figure 25 sows the estimated RTT latency. As expected, on median level, RTT equals the sum of the median 
UL OWD and DL OWD contributions, for all the different configurations explored (23.3 ms for modem 1, 
25.6 ms for modem 2, and 22.5 ms for the multi-connectivity scheme). As observed, RTT is heavily impacted 
by the UL performance, also exhibiting a large tail for modem 1 and modem 2, with a RTT latency larger than 
100 ms in 1% (10-2) of the cases. With multi-connectivity, the tail is reduced, exhibiting a latency lower than 
100 ms in only 0.1% of the cases, and bounding the maximum RTT delay to 333.6 ms at the 99.999% level, 
much lower than that observed individually for modem 1 or modem 2, which were 958.8 ms and 891.5 ms, 
respectively. 
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Figure 25: Empirical CCDF of the estimated RTT for modem 1, modem 2 and latency-optimized multi-
connectivity. 

The reliability of the different configurations was also evaluated by means of PER (or packet loss), quantified 
from the lost packets in the different tests. As detailed in Figure 26, PER was slightly larger in DL than in UL. 
PER was 0.21% in DL and 0.17% in UL for modem 1. Similar values were observed in modem 2, with a PER 
of 0.22% in DL and 0.12% in UL. Duplicating the information over the two interfaces of the 5G end user 
devices has a clear benefit, not only in terms of latency, but also in reliability of information delivery, as the 
PER can be reduced to values close to zero (0% in DL and 0.02% in UL) by using multi-connectivity. 

 

Figure 26: PER for modem 1, modem 2 and latency-optimized multi-connectivity. 
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In global terms, PER was better than 1% (10-2) for single modem configurations, and better than 0.1% (10-3) 
with multi-connectivity. 

The results from the throughput tests are reported in terms of Cumulative Distribution Function (CDF) in 
Figure 27, for DL (left) and UL (right), respectively. This measurement ran into a limitation of the capacity of 
USB ports on the GW6405 PC, which limits the modem to 89 Mbit/s. Therefore, it should be noted that, in 
practice, the expected DL performance of modem 2 (if unlimited) would be very similar to the one from modem 
1, reaching values above 200 Mbit/s. The presented results should still be valid, as the main target of these 
measurements was to understand what was the minimum level of data rates guaranteed/offered by the 5G 
network. This limitation has a smaller impact on the UL data rate performance, as observed in Figure 22 (right), 
the throughput values are lower than in DL. The maximum UL data rate measured in modem 1 was 102 Mbit/s. 
DL throughput was found to be larger than 1 Mbit/s 100% of the time for modem 1, and 99.8% of the time for 
modem 2. At least 10 Mbit/s were experienced in 95.5% and 93.5% of the cases for modem 1 and modem 2, 
respectively. 27.8% of the DL throughput samples measured with modem 1 presented values above 100 Mbit/s. 
As illustrated, the multi-connectivity scheme based on the selection of the best interface (max) leads to a slight 
improvement in DL throughput as well. This is since data rates benefit from optimizing the latency as we are 
able to transfer data faster. This effect is noticeable mainly in the tails of the distribution, where the low data 
rates are improved, offering at least 4.1 Mbit/s of minimum DL throughput, instead of the 0-1.5 Mbit/s 
experienced by individual modems. At median level, this type of multi-connectivity offers 88.7 Mbit/s, also 
showing some improvement as compared with the individual 75.0 Mbit/s for modem 1 and 85.3 Mbit/s for 
modem 2. The second multi-connectivity scheme targeting data rate-optimization (sum), leads, as expected, to 
high gains in throughput based on coordinated exploitation of both interfaces. 

a)

 
 

b)

 

Figure 27: Empirical CDF of the DL (left) and UL (right) throughput for modem 1, modem 2, latency-
optimized multi-connectivity, and data rate-optimized multi-connectivity. 

 

With this scheme, minimum, median, and maximum DL throughput were improved to 6.0 Mbit/s, 154.8 
Mbit/s, and 297.3 Mbit/s, respectively. This performance translates into 1 Mbit/s in 100% of the cases, 10 
Mbit/s in 99.8% of the cases, and 100 Mbit/s in 71.1% of the cases. UL throughput values are lower than DL 
throughput values. UL throughput was found to be very similar for both modems, with a median value of 35.5 
Mbit/s, experiencing 1 Mbit/s and 10 Mbit/s in approximately 99.5% and 91% of the cases, respectively. In 
terms of multi-connectivity, the scheme based on selection of the best of the two interfaces provides smaller 
gains in UL as compared to DL (due to the impact of the 5G network access mechanisms explained before). 
With this type of multi-connectivity, the minimum data rate experienced with modem 1 and modem 2, that 
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was 0-1 Mbit/s, is increased to 1.3 Mbit/s. Median values are slightly increased to 41.3 Mbit/s, as well as the 
levels at which 1 Mbit/s and 100 Mbit/s can be guaranteed, which are raised up to 100% and 94.7%, 
respectively. While no large gains are observed at lower data rates for the multi-connectivity case that makes 
active simultaneous use of both interfaces (1.8 Mbit/s of minimum throughput), enhances the median data rate 
to 72.2 Mbit/s and maximum throughput to 150 Mbit/s. This has a positive impact on the levels of specific 
data rates of interest, where 1 Mbit/s is experienced in 100% of the cases, and 10 Mbit/s and 100 Mbit/s in 
97.3% and 22.8% of the cases. As it may have already been observed, some of the UL throughput tests for 
modem 1 and DL throughput tests for modem 2 reported 0 Mbit/s. The reason for such performance was 
investigated, finding that those exact tests were performed at those test route areas where poor signal conditions 
or eventual disconnections were experienced.  

5 Algorithms and Protocols for Swarming 
Drones4Safety is addressing the increasing uptake of autonomous drones for carrying out complex and 
potentially unsafe tasks in society. While most demonstrations of the application of drones today have involved 
only a single drone, the industry is rapidly advancing the transition towards the deployment of groups of 
collaborating autonomous drones, also known as “swarms”, driven by a demand for cost reductions. Swarming 
involves the coordinated operation of multiple drones to accomplish a large-scale or complex mission. Swarms 
may be composed of multiple drones or groups of homogeneous drones controlled by a centralized or 
decentralized algorithm. The benefits of swarming include improved performance on tasks that can run in 
parallel, the ability to perform multiple actions simultaneously in different locations, as well as increased fault 
tolerance. 

Autonomous Inspection concerns the drone swarm’s ability to fly autonomously and carry out inspection. 
Inspections are modeled as a set of tasks where the complete set becomes the mission. A task is constructed in 
a way that a drone can perform such a task during a charging cycle. To inspect a linear part of the infrastructure 
the drone system can fly in well-defined formations, to allocate and coordinate tasks i.e., parts of the complete 
inspection missions to be carried out by individual drones. For more complex infrastructure parts, such as 
power pylons, a drone should be capable of determining an inspection path for its motion planning.  

Communication is a foundation for drone control, data sharing and collaboration between drones. The use case 
concerns the use of LoRa to provide a Command and Control (C2) channel between a Ground Control Station 
(GCS) and a drone. As the roll-out of 5G mobile network services is progressing, it is becoming of increasing 
interest to validate the applicability of 5G for drone communication. Mobile operators are prioritizing network 
coverage in urban areas and expectedly secondary priority is given to rural areas where most of the powerline 
inspections are performed. It is therefore of utmost importance to validate the applicability of 5G to support 
drone inspection in rural areas.  

At least but not last, the need for security of the drone system is further stressed from the autonomous 
inspection mission. Vulnerabilities and a threat analysis of the multi-drone system was provided in deliverable 
D5.2 [11]. The results of the threat analysis based on the Drones4Safety use cases and its influence on the 
multi-drone system show that the different entities/nodes as well as communication between them need to be 
secure. The most severe threats cover spoofing and DoS attacks. However, concerning security in the design 
process, techniques such as tamper-evident logging, intrusion detection, and establishment of safety protocols 
are as important. 

5.1 Secure group management protocol for the drone swarm  
The drones in the swarm are expected to exchange sensitive information among each other and with the cloud 
infrastructure, such as the positioning of drones and collected images from the infrastructure under inspection. 
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This information should be exchanged securely, making it inaccessible to external adversaries within 
communication range. We propose a protocol that allows a swarm to self-organize in groups, manage the 
membership of drones in the groups and facilitate the secure communication in these groups. 

5.1.1 Network topology 
Drones self-organize in disjoint groups of drones. Each group is composed of several member drones and a 
“controller” drone. The controller has three primary responsibilities: 1) to manage the members of its group, 
2) to facilitate communication between groups and 3) to facilitate communication with the GCS. We assume 
that the groups form a fully connected network, implying that there is no need for routing messages since each 
drone can reach one another. These concepts are illustrated in Figure 28, which consists of eight drones split 
into two groups. The drones within a group are trusted and information exchanged between a pair of drones in 
the group is not necessarily intended to remain secret from the other members. 

 

Figure 28: Network topology with two groups. Both groups consist of three member drones and a controller 
(depicted with a crown symbol). The radio tower represents the GCS. 

 

5.1.2 Requirements 
We define a list of requirements that drives the design of the secure group management protocol. The 
functional requirements are as follows: 

1. Drones must be able to identify groups through broadcast messages from the controller. 

2. Drones must be able to join a group. 

3. Drones must be able to leave a group. 

4. The protocol should handle non-responsive members. 

5. The protocol should be resilient against controller failure. 

6. Group members should be able to communicate among each other. 

In general, these requirements ensure that a swarm of drones can form a (resilient) group and communicate 
among each other. We introduce a few security requirements that specify the types of security features our 
protocol must have: 
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7. The protocol should provide confidentiality. 

8. The protocol should provide integrity protection. 

9. Only pre-approved drones should be allowed to join groups. 

10. The protocol should be resilient against replay attacks. 

11. The protocol should strive for forward and backward secrecy. 

These security requirements are partially derived from the CIA model [5], which describes confidentiality 
(protection against unauthorized information release), integrity (protection against unauthorized information 
modification) and availability (protection against unauthorized denial of use). The protocol focuses primarily 
on the first two (Req. 6 and 7). Req. 9 should prevent an external adversary from joining groups, where Req. 
10 prevents the adversary from interfering with the operations of the group. Furthermore, Req. 11 demands 
that the disclosure of several group keys does not lead to the discovery of older or newer group keys [10]. 

5.1.3 Cryptographic key management 
There are several cryptographic keys that are managed within the drone swarm to provide the necessary 
security guarantees. These keys are used in a combination of symmetric encryption, asymmetric encryption, 
message integrity codes (MICs) (like Zigbee [7]) and digital signatures. We denote the different keys that are 
being used and the purpose that each of them serve. Keys are stored on the individual drones in a hardware 
security module (HSM), a trusted network computer that is used to perform cryptographic operations, such as 
key management, key exchange, and encryption [6]. Importantly, the HSMs are tamper resistant, such that 
adversaries that have access to the drone hardware are unable to access the key stores in them. 

Table 1: Overview of cryptographic keys used in the drone swarm. 

Key type Requirements 
addressed 

Description and significance of key 

Root key Req. 9 Pre-approved drones must have a secret that an adversary does not 
have. This secret is a symmetric root key that is pre-loaded on each 
drone before the execution of a mission. The root key can be renewed 
in between missions to provide forward and backward secrecy. The 
root key is used in the joining process to prove that the drone is 
allowed to join the group, and after this process any communication 
is secured through the other (session) keys. 

Group key Req. 11 A shared symmetric group key is used to encrypt messages 
exchanged between members of the group. This key is distributed by 
the controller of the swarm to any new member. Any message that is 
encrypted using the key can be decrypted by any of the group 
members. This mechanism allows the group to broadcast (instead of 
unicasting to all other members), reducing the number of exchanged 
messages. The key is renewed every time a new member joins or an 
existing member leaves swarm. As a result, the group key has a 
version number, which is incremented each time the key is renewed. 
Only drones in possession of the most recent group key can 
communicate among each other. 
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Public/ Private 
(asymmetric) 
key pair 

 
Each drone has its own unique asymmetric key pair. This key pair is 
used for digitally signing messages to prevent spoofing of messages 
or to encrypt messages intended for a single drone. 

 

5.1.4 Protocol specification 
Each drone in the swarm has a state from the perspective of that group’s controller. Through exchanging 
messages with the controller, a drone changes state according to Figure 29. Drones are initially ‘unjoined’ and 
either start to advertise themselves as a controller (thereby becoming a controller themselves) or by attempting 
to join an existing group. drones that are a current member can choose to leave or try to resynchronize with 
the controller. At any point, a member can be removed from the group through a timeout. Once a drone is 
‘joined’, it can exchange data with other members of the group (including the controller). Our proposed 
protocol does not implement any leader selection algorithm that establishes which drone in the swarm is 
assigned as the controller of groups. 

 

Figure 29: State machine diagram of a drone from the perspective of the group’s controller. State changes 
occur through messages sent by the drone (blue) and controller (red) or timeouts. 

. 
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As shown in Figure 29, drones can transition between states throughout communication with the controller. 
This section denotes the communication patterns that our protocol supports, or the activities that a drone and 
controller go through. 

5.1.4.1 Act as controller 
An unjoined drone can decide to become a controller and start advertising its own group by periodically 
sending a broadcast message. From the perspective of a controller, the controller cannot leave its own group. 
In case of failure of the controller, the members of its group leave the current group and establish a new one 
(i.e., one drone advertises as controller and the other drones immediately join it). 

5.1.4.2 Joining a swarm 
Any unjoined drone is aware of the nearby groups, through the controller broadcast messages. The non-
member can join a group by sending a JOIN request, which - if cryptographically valid - will be accepted by 
the controller through a JOIN-ACCEPT message or rejected if not. 

5.1.4.3 Leaving a swarm 
A joined drone can leave a group via two mechanisms: 1) initiated by the drone or 2) initiated by the controller. 
In the former case, the drone sends a LEAVE message, which is acknowledged by a LEAVE-ACCEPT 
message from the controller. The latter case is triggered when a controller has not received any message from 
the drone for an amount of time and times out. Examples of where this can occur are a drone that flies out of 
communication range of the controller or failures in the drone (e.g., crashes or failing communication 
hardware). The drone is removed from the group forcefully by the controller and needs to initiate the join 
process again when entering the communication range of the controller. 

5.1.4.4 Key synchronization 
Packet loss is expected in wireless communication. It means that group members may miss the important group 
key updates. If a group member identifies that it has not received the most recent group key update from its 
controller, it can engage with the controller in a key synchronization process. The group member sends a 
SYNC request in which it must prove the possession of the former group key to the controller, which – if 
verified successfully – is accepted by the controller and the current group key is shared with the drone. 

5.1.4.5 Group key update 
Each time a drone joins or leaves the swarm, the group key is renewed by the controller and distributed to the 
drones. This update is sent through a single broadcast message. Even though this activity does not lead to a 
state change in Figure 29, it is a direct cause for a drone to fall out of sync with the controller thereby leading 
to a need for a key synchronization step. Since group key updates can occur frequently (in volatile group 
compositions), it is necessary for these messages to be disseminated to all group members simultaneously as 
opposed to unicasting to each member individually. 

Details on the protocol message design can be found in Appendix A. 

5.1.5 Validation 
To validate our proposed secure group management protocol, we developed an initial implementation that 
follows the protocol specification. We then used this prototype to evaluate several test cases, which consist of 
a scenario, a number of actions to perform and an expected outcome. By applying the actions to the scenario, 
we can then verify whether the actual outcome matches the expected outcome. 

We implemented the protocol in a Python application, in which messages are simulated as function calls, and 
the handling of the messages is implemented in the functions. We rely on PyCryptodome [8] for the 
cryptographic operations. For asymmetric encryption, RSA with OAEP padding is used [9]. For signature 
generation, a signature generator derived from RSA is used [9, Section 8.2.1]. The device and controller nonces 
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are implemented as a counter that increments, which makes the verification of the nonce simple i.e., only the 
largest nonce needs to be stored. 

5.1.5.1 Test cases 
In total, we evaluated ten test cases (TCs). Each individual test case covers a sequence of actions that the 
protocol is expected to encounter in a real-world scenario. For each test case, we illustrate the behavior of the 
protocol implementation through the logs that the implementation provides. 

TC1: Join request 

Scenario This scenario consists of a drone overhearing a broadcast from a controller and attempting 
to join the group. The expected behavior is a valid JOIN request being sent from the drone 
to the controller and a JOIN-ACCEPT response being sent by the controller. 

Validation 

 

 

TC2: Join Accept 

Scenario The JOIN-ACCEPT message is sent by the controller, correctly interpreted by the drone and 
that the drone is added to the swarm. 

Validation 

 

 



38 
 

TC3: Leave with no task 

Scenario This test case consists of a group composed of a controller and single member. The member 
initiates a leaving process, while not having assigned a task. As such, the member does not 
require an acknowledgement from the controller. The drone sends a LEAVE request (with 
the ACK/NAC value set to zero) and leaves the group without waiting for a confirmation. 
The controller correctly removes the member from the group without sending a 
confirmation. 

Validation 

 

 

TC4: Leave mid task 

Scenario In this scenario, a member drone removes itself from the group by sending a LEAVE 
message. As opposed to the previous scenario, the drone does have a task assigned to itself, 
and must therefore wait for a LEAVE-ACCEPT acknowledgement. The controller correctly 
receives a LEAVE request and responds with an acknowledgement. It also confirms that the 
member receives the acknowledgement and only afterwards considers itself a non-member. 

Validation 

 

 

TC5:  Leave mid task without notice 

Scenario This test case simulates the scenario in which a controller that has not received a message 
from its member recently. A timeout should trigger the removal of the drone from the group. 
The controller correctly identifies the timeout trigger and removes the member from the 
group. 

Validation 

 

 



39 
 

TC6: Replay attack 

Scenario This test case considers a situation in which a drone legitimately joins a group. An 
adversary overhears the JOIN message and replays the message. The controller must 
recognize this as a replay attack and reject the adversary from joining the group. A 
legitimate joining process and the overhearing by the adversary (Case A). So far, this 
behavior is identical to the JOIN request test case. When the adversary replays the JOIN 
message the controller correctly recognizes the message as a replay attack and rejects the 
message (Case B). 

Validation Case A: 

 

Case B: 

 

 

TC7: Controller failure 

Scenario This test case evaluates the protocol reaction to a controller failure. The original controller 
of a group with two members stops communication and after a timeout the remaining group 
members must create a new group with one of the members taking the role of the controller. 
The members identify the failure of their controller and leave the group. One of the drones – 
chosen arbitrarily in our implementation – assumes the role of controller and starts 
advertising its group through broadcasting messages. The second former member overhears 
this broadcast and joins the newly formed group, matching the expected behavior. 
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Validation 

 

 

TC8: Group key update 

Scenario This test case evaluates the group key updating process, which should be triggered after any 
group membership change. The scenario consists of a controller that initially has no members. 
The following occurs then: 

drone 1 joins the group 

drone 2 joins the group 

drone 1 leaves the group 

drone 1 re-joins the group 

After steps 2, 3 and 4, the controller is expected to renew the group key and update its current 
members with the updated key. 

Case A shows the correct behavior of a group key update process when the second drone joins 
the group. The last line confirms that the first drone updates its group key according to the 
update broadcast. Afterwards, the first drone leaves the swarm, which triggers the expected 
key update (Case B). Finally, the first drone re-joins the swarm again, triggering a third group 
key update (Case C). In all three cases, the group keys are different from one another and are 
distributed correctly across the group members. 

Validation Case A: 
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Case B: 

 

Case C: 

 

 

TC9: Drone synchronization 

Scenario This test case verifies whether an out-of-sync drone can regain the current group key. The 
scenario consists of an empty group, with the following activities happening: 

 drone 1 joins the group 

 drone 2 joins the group 

 The group key is not correctly updated for drone 1 
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 A test message is sent to drone 1 

 The first drone must recognize that it is out of sync with the controller and must 
initiate a synchronization process.  

Case A shows the first three activities, up to the group key that is not correctly distributed to 
the first drone. After accepting a test message, the first drone correctly sends a SYNC 
message to the controller, which responds with the SYNC-ACCEPT message (Case B). As 
a result, drone 1 correctly updates its group key. 

Validation Case A: 

 

Case B:  

 

 

TC10: Wrong MIC 

Scenario This test case evaluates whether the implementation correctly responds to an invalid MIC. 
In this scenario, a drone wishes to join a controller, and through a (simulated) error, one of 
the bits in the join message payload flips. The controller should recognise a MIC error and 
reject the join request. The calculated MIC over the message (9+\\\xd2) does not match 
the transmitted MIC (a\x9e\x84\xdb), and that the message is rejected correctly. 

Validation 
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We propose a group membership management protocol, in which a group of nodes self-organize themselves 
into a group under the leadership of a ‘controller’ node. The protocol allows nodes to join groups when in 
possession of a shared ‘root key’ and leave when necessary. Communication between group members is 
facilitated by asymmetric encryption using a shared ‘group key’. This group key is renewed whenever the 
composition of the group changes, ensuring that new members cannot discover preceding group keys (thereby 
providing backward secrecy in the protocol). We validate a proof-of-concept implementation of our proposed 
protocol by subjecting it to several test cases. 

5.2 Motion path planning 

5.2.1 Global path planning 
Global path planning refers to high-level path planning using the data known prior to the autonomous mission. 
For the scope of the Drones4Safety project, the data involves infrastructure locations gathered from the Open 
Street Map (OSM). As the project aims at developing a continuous autonomous operation of inspection drones, 
we implemented a high-level planning strategy that ensures that drones always fly near the infrastructure. Such 
a strategy was chosen to avoid flights in residential areas and facilitate obtaining flight permits in the future. 
For routing to the inspection infrastructure, we implemented a graph structure representing the locations of 
power towers and power lines. As initial research showed, around 70% of bridges are located within 3 
kilometers of the power and rail infrastructure. We added bridge locations to the graph, enabling the drones to 
autonomously reach a bridge. The addition of bridge locations required the implementation of the algorithm 
for finding central points in polygons that represent bridges, extracted from the OSM. Each central point was 
connected to the closest node in the graph and all nodes were connected with weighted edges. Each edge was 
represented with three elements: the nodes it connects, the distance between the nodes, and the penalty factor. 
The penalty factor is increased for those edges which traverse over the open air instead of power lines to avoid 
flying away from the infrastructure whenever that is possible. The weight is computed by multiplying the 
distance with the penalty factor and is used by the A* algorithm when finding the most proper path. Therefore, 
the algorithm will not always find the shortest path. Instead, it will check if the path above the power lines is 
not drastically longer than the shortest one above the open air and, if it is not, choose the one above the lines. 

The algorithm was implemented in microservices where each service provides a functionality. Services are 
containerized and deployed to the cloud in a Kubernetes cluster. A user interacts with services through the web 
interface exposed to the internet. Bridges and towers included in the graph are visualized on the interface for 
the user to select routing/inspection targets. As seen in the figure below, power towers are represented as light 
blue circles, drones are in orange, and bridges in purple. When a user selects a target location, a green circle 
appears as well as the option to calculate the route. The route calculation services are engaged, and the final 
route is visualized in red.     
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Figure 30: Examples of output of the global path planning. 

           

5.2.2 Collaborative path planning 
This work considers a system consisting of multiple drones connected within a wireless network.  We address 
the motion planning problem of moving multiple drones such that they 1) keep themselves out of collisions 
with other drones or obstacles in the environment.  2) can be guided and generate behaviors according to team-
level goal definition, e.g., a goal position for a team of drones without goal assignment for each drone. 

We propose a game theoretical framework for drones’ path coordination. The framework extends existing 
optimization-based drone path plan solutions by involving the theory of Generalized Potential Games to 
directly plan according to a high-level goal description for a team of drones. 

Our proposal is formulated as a sequence of multi-agent games seeking for equilibrium solutions, which 
generates an approximate optimal solution for a team of drones. The computation of equilibrium guides each 
drone in the multi-drone system to calculate its control inputs subjected to constraints, e.g., robot dynamic 
limitations and obstacles. We developed a docker based platform for simulating multiple drones (UAVs) and 
evaluated the motion planner on collision avoidance in numerical and Software-in-the-Loop (SITL) 
simulations. 
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Figure 31: Coordinated path planning for two drones (UAVs) in an obstacle existing environment. (a) Two 
UAVs are represented by their body coordinate frames in the RViz. (b) The UAV 1 plans a path to keep safe 

distance to the UAV 2. (c) The simulated environment in Gazebo. 

In Figure 31 each drone (UAV) senses the obstacles within the field of view (FOV) of the on-board cameras. 
Two drones plan the path to fly towards a predefined waypoint while avoiding obstacles. 

Figure 31a shows an example that two drones (UAVs) plan paths, in red curve, towards a target team-level 
waypoint position while avoiding encountered obstacles. The drone (UAV) is controlled by position and 
velocity commands. Obstacles are sensed in real-time with the RealSense D435 model and visualized as 
voxels. The visualization of the UAV 1 and 2 are shown on the right and left side on Figure 31a, 
respectively. Due to the limited field of view of the camera and the diversity of the UAV’s locations, visualized 
obstacles are different. 

The target team-level position waypoints are set by the user and shared to drones through the local network 
using multimaster_fkie package. Cooperative path planning algorithm is triggered if the drone-to-drone 
distance is less than a predefined coordination distance. Within the coordination distance, the UAV updates its 
path to keep a safe distance from the other UAVs.  Figure 31b shows the path of the UAV 1 being pushed 
away by the path of the UAV 2 due to the safe distance constraints during the path generation. 

5.2.3 Inspection path planning 
A novel inspection path planning method for achieving a complete and efficient inspection using drones was 
designed. The method uses a point cloud generated from a 3D mapping service to represent complex inspection 
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targets and provided as the input of the path planning method. The method is designed as a sampling-based 
sequential optimization to calculate and optimize an inspection path while considering the limitations of the 
sensors, inspection efficiency, and safety requirements of the drones. 

5.2.3.1 Inspection Path Planning Pipeline 
The path planning pipeline consists of three modules (Figure 32). It reads a point cloud set, e.g., PLY file, as 
input and exports a sequence of waypoints with related sensor orientations, e.g., camera angles.  

 

Figure 32: Overview of the path planning pipeline for inspection. 

Step 1 works on data cleaning, normal vector estimation, and downsampling. Step 2 generates a graph based 
on downsampled data and then searches a feasible traversal path for the graph. Based on the traversal path and 
the normal vectors, step 3 constructs the optimization problem to find and optimize the flight waypoints and 
sensor orientations.  

 
Figure 33: (a) A point cloud (PLY file) is generated by the 3D mapping service. (b) The inspection area is 
selected and cropped. (c) The point cloud is cleaned and smoothed. The smoothness is represented by the 

difference in color. 



47 
 

We evaluate the proposed inspection path planning method using a bridge in Italy [1]. We assume a 3D map 
of the inspection target is provided as a point cloud file (Figure 33).  

 
Figure 34: (a) A normal vector of each point is estimated and oriented perpendicular to the consistent 

tangent plane. (b) The point cloud with its normal vectors is downsampled using voxelization. 

 

Afterward, points are sampled from the mesh with a predefined surface-point density. In addition, their normal 
vectors are estimated (Figure 34) from examining adjacent points in the point cloud. 

The drone flight becomes efficient when the guided path is simple, e.g., a path that avoids repeating trajectories 
or directional changes. It enhances the safety to leave more margin to react to unexpected situations in the 
field. However, a path search, e.g., finding the shortest traversal path from a graph representation of an 
inspection target, often leads to complex results. To control the complexity of the path search a segmentation 
step is involved. The point cloud is segmented into 6 clusters based on the normal vectors of the 6 facets of 
the oriented bounding box (Figure 35a). Figure 35b represents an example of a segmented point cluster of 
which the point normal vectors are close to the normal vector of the top facet of the bounding box . 
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Figure 35: (a) The point cloud is clustered based on the normal vectors shown with orange arrows, of the 
oriented bounding box in blue. The axis-aligned bounding box is shown in yellow with a local coordinate 
system visualized in the bottom right corner. (b) A cluster of the points that represents the top part of the 
bridge. (c) A graph is generated based on the point cluster in (b). (d) A graph generated from a different 

point cluster contains two components, i.e., two induced subgraphs in which any two vertices are connected 
to each other by paths. 

By searching paths for 6 clusters of the segmented point cloud based on the generated graphs, the inspection 
sequences for 6 clusters are calculated. As the output of the second step, Figure 36 presents the segmented 
cloud point (6 clusters), normal vectors, and the traversal path, which guaranteed a complete visit of all points. 
Each point cluster is visualized with the axis-aligned bounding box. The axis represents the local coordinate 
system. 
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Figure 36: An efficient path, shown in red, is searched to fully visit all points in each point cluster of the 
bridge, which is generated based on normal vectors representing 6 different directions. The green sphere, in 

the top left corner, denotes the start point of the path search. 

To control the complexity of the inspection path, task segmentation is involved. The graph is generated for 
path search, which searches a traversal path that defines the inspection sequence. In Figure 36, the red line 
shows the traversal path of each segment, while the green point represents the beginning of the sequence. At 
last, the optimized inspection path of each segment is visualized in blue (Figure 37). 
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Figure 37: The bridge is represented as a triangle mesh in yellow. Red lines indicate the result of the path 
search. Optimized inspection paths for the bottom-side, front-side, back-side, and front-side of the bridge are 

presented in blue. 

 

5.2.3.2 Path optimization algorithm 
The path optimization step converts the inspection sequence (traversal path) to an efficient flight path while 
considering safety constraints, and sensor limitations. The flight path is optimized in terms of the flight distance 
and the path smoothness. The path optimization is constructed as a sequential convex optimization by 
combining point cloud data, normal vectors, and the traversal path. Mathematically the optimization problem 
can be formulated as follows:  

 

Where ∆ൌ ሾ∆
௫ ,∆

௬,∆
௭ሿ  denotes the position control variable in 3D space. ∆

௫,௬denotes the x and y-axis 

components of ∆. ∆
௭ denotes its z-axis component. β and μ are constant values that represent the scalar of the 

constructed cost function. Pstart indicates the start position of the inspection task. 𝑔 ൌ ሾ𝑔
௫ ,𝑔

௬ ,𝑔
௭ሿ denotes the 

position of jth viewpoint, where the inspection sensor e.g., the camera, is triggered to sense an area defined 
based on the jth sampled point in the point cloud. The number of sampled points is J. An efficient traversal 
sequence of the sampled points is calculated at the path searching step. The equation above describes the 
objective function for the path optimization, which minimizes the total path length and the change of the 
consecutive position control variable at the x, y, and z-axis. We select βൌ1 and μ=10 to punish more for the 
difference generated from the z-axis, i.e., the altitude of the drone.  
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The constraints begin with equality constraints, defining the initial value and the update function for the 
calculation of viewpoint g. Then the inequality constraints represent the incidence angle limitations, the safety 
minimal distance, and the maximal inspection distance. Inequality constraints are visualized in Figure 38, 
where the incidence angle limitations are constructed by the inner product between the vector (gj-vji) and the 
normal vector hij of the hyperplanes. The hyperplane is defined by the incidence angle and the edge of the 
square constructed perpendicular to the normal vector n of the point p. 

The orientation of the sensor for each inspection area is defined by g and p, where the sensor is placed at the 
position of g and oriented towards the position of p, i.e., the sensor orientation is settled by the vector (p-g). 

 

Figure 38: The constraint space for the path optimization. 

As shown in Figure 38, a convex constraint space is constructed. p is a point in the downsampled point cloud. 
n is its estimated normalized normal vector. Marks 𝑣 , 𝑖 ∈ ሼ1,2,3,4ሽ denote the vertices of the constructed 
square, of which the center is the position of p, the length is defined by the voxel size in the voxel 
downsampling step. Vectors ℎ , 𝑖 ∈ ሼ1,2,3,4ሽ  represent the normalized normal vectors of the hyperplanes, 
which are constructed based on edges of the square and the incidence angle constraint, e.g., h1. Two 
hyperplanes in green and red parallel to the square are constructed at the side defined by the normal vector  
and the distance defined by dmin and dmax. The *g denotes the viewpoint, of which the position is to be optimized 
subject to the constraints. 

5.2.3.3 Experiments and validations 
A Python-embedded modeling language, CVXPY [29], is used for modeling the sequential convex 
optimization problem. The embedded conic solver (ECOS) [30], an interior point solver, is mainly used for 
calculating the optimal result. Figure 37 below presents the result of the path optimization, where the incidence 
angle limitation is set to 30 degrees, the minimal safety distance, and the maximal inspection distance (dmin 
and dmax) are set to 1 and 2.5 meters, respectively. 

It is recommended to deploy the proposed processing steps on a cloud computing platform, which provides 
sufficient computation power for path search, path optimization, as well as point cloud visualization, especially 
for large-scale inspection tasks. Cloud deployment also leads to convenient integration with the 3D mapping 
service, e.g., webODM, which provides input data for the processing chain. The processing chain is designed 
to provide path guidance for the inspection task. It is sufficient to generate the path before the task is stated 
and then send the path data to autonomous drones as global guidance. The drone is expected to have an on-
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board local path planner for waypoints following and obstacle avoidance to respond to unexpected turns of 
events during the inspection. 

5.2.3.4 Computational performance analysis 
A computation analysis is presented to provide an overview of the time consumption of the proposed method. 
The evaluation of the computation uses Intel i7-8650 CPU as the platform. Figure 39 presents the time 
consumption of the path optimization and the path searching for processing different sections of the inspection 
target.  

 

Figure 39: Computation time of the path optimization (top) and path search (bottom) for different 
decomposed point clusters. 
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Figure 40: Computation time of the proposed path optimization algorithm. The labels below the scatter plot 
points indicate the number of sampled points. A linear regression yields a   value of 0.9945. 

The total time consumption of the described method is presented in Figure 41. The time consumption shows a 
linear increase with the sampling points. The total number of sampled points depends on the voxel size, a 
parameter for the voxel downsampling. Most of the time consumption is used for processing path optimization. 
Normal estimation, graph generation, and decomposition are the subsequent steps that are time-consuming.  

 

Figure 41: The total computation time of the proposed method in terms of the voxel size. The number of the 
sampled points using voxel downsampling is given. The time consumption of different steps is provided 
individually to show the distribution. The red section (Others) includes steps of voxel downsampling, 

bounding box calculation, and path searching. 

To evaluate the scalability of the method, we measured the computation time of the path optimization for 5 
different sizes of the problem, 20 measurements for each problem. Modeled as a sequential convex 
optimization. The proposed optimization algorithm has O(n) time complexity. It is observed in Figure 41, a 
linear relation between the computation time of the path optimization and the number of sampled points, 
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reflecting the size of the problem. The number of sampled points is influenced by the voxel size parameter 
required by the voxel downsampling step. 

5.2.4 Reactive motion planning 
The collision avoidance is evaluated by measuring the minimum rope to obstacle distance during the spray-
painting task. We collect data while the end-effector is moving around a generic 3-dimensional obstacle. 

Figure 42 presents three different behaviors of the drone together with the rope (i.e., A, B, C) reacting to the 
same position (shown in red circle) of the end-effector with different combinations of policies: 

 Case A: both drone-collision-avoidance and rope-collision-avoidance are enabled. 

 Case B: the drone-collision-avoidance is enabled. 

 Case C: no collision avoidance.  

In case A, the distribution of the minimum rope to obstacle distance has been maintained above 0.2 m with a 
median value of 0.4 m. In case B, the median value of the minimum rope to obstacle distance is higher than 
the one in scenario C since the drone collision avoidance may move the tethered rope away from the obstacle 
in some cases. The minimum rope to obstacle distance for case C is mainly distributed between 0 to 0.4 m with 
a median value close to 0 m.  

 

Figure 42: Collision avoidance performance is evaluated under three different combinations of policies. The 
policy combination grows one by one from C to A. In the scenario of C, goal following policy and straight 
forcing policy are enabled. B: The drone collision avoidance policy is enabled in addition to the policies 

used in the scenario of C. A: Furthermore, the rope collision avoidance policy is enabled. 

We evaluated the computation of the reactive motion planner. The proposed planner is highly efficient and can 
easily be run at reactive, real-time frequencies without special hardware. Figure 43 shows the time cost of the 
top-3 time-consuming functions for each motion planning iteration (20 Hz).  

On a computer with an Intel i5-4200M CPU and 8 GB memory, the planner uses approx. 5-7% of one CPU 
core, measured using rqt_top. Of this computational budget, about 33% are spent on motion planning and 
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integrating accelerations, 45% on obstacle detection and mesh operations using CGAL, and 16% on the rope 
simulation, profiled using callgrind. 

 

Figure 43: The computation time of top-3 time-consuming executed functions in the planner software: 
motion planning, rope simulation and obstacle detection. 

 

5.3 Task allocation 

5.3.1 Centralized - cloud services 
As part of the global path planning strategy, additional service to determine the order of multiple drones 
visiting multiple towers has been developed. The figure below shows services with additional VRP service 
solving the vehicle routing problem [15]. The service receives inspection targets and drone locations and uses 
OR-Tools to determine which drone should fly to which target. It creates requests to the A* service 
asynchronously to get the shortest path for each combination of drone and target. Then, it builds the distance 
matrix and, based on path length, finds a near-optimal solution to the vehicle routing problem. It returns the 
path for each drone as a set of waypoints containing locations in latitude and longitude.  

 

Figure 44: Application structure of LiMiC1.0 cloud based on capabilities [15]. 

When a user selects multiple inspection/routing targets on the web interface, the near-optimal order of visiting 
is determined, and routes are visualized as in the figure below. Final routes can be stored or sent to the drones 
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to start executing the mission. The cloud platform developed in WP6 enables mission planning, execution, 
monitoring, and data exchange with drones. It provides data storage, therefore, creating a global data space for 
sharing a priori knowledge about the environment with drones [16].   

 

Figure 45: Web interface showing calculated inspection routes in red, for each UAV reaching a target [16]. 

 

5.3.2 Charging protocol 
The limited battery capacity of a drone results that the inspection of infrastructure cannot always be completed 
without any recharging mechanism. Depending on the type of mission, the drones charge on overhead power 
lines (for railway inspections) or at a designated charging station (for bridge inspections). In the latter case, 
the charging station is assumed to be capable of serving a limited number of drones, and as such it becomes a 
shared and limited resource. It then becomes necessary to produce a schedule that allocates the charging 
stations to the drones, and the quality of the schedule impacts the execution time of the mission. We introduce 
a charging schedule protocol that aims to minimize the mission execution time. 

We define the allocation of charging stations to drones as an optimization problem. In this problem, we assume 
that each drone has a set of three-dimensional waypoints that form a sequence that the drone needs to take. 
Near these waypoints there are a few fixed charging stations located, whose location is known to each drone 
and each of which can charge one drone simultaneously. The velocity and battery and charging depletion rates 
(percent per second) are assumed to be constant and known in advance. Given this situation, the objective of 
the optimization problem is to: 

“Schedule the path of each UAV along its waypoints and charging stations to minimize the mission execution 
time” 

As constraints to this problem, during the mission (1) the batteries of the drones cannot fully deplete and (2) 
each charging station cannot serve more than one drone at any point during the mission. 

In our problem definition, each drone must follow a path, which consists of its allocated waypoints and visits 
to charging stations. For each allocated waypoint, the optimization model decides to directly move to the next 
waypoint, or visit one of the charging stations (cf.  Figure 46). Furthermore, the model should decide how 
much time each drone must (1) wait before charging and (2) charge its battery. 
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Figure 46: The different paths a drone can take between three of its waypoints (wi-1, wi, and wi1). After 
each waypoint, the drone has the option to visit any charging station (gray nodes) or move directly to its next 

waypoint (blue nodes). 

 

5.3.2.1 Model formulation 
We define the problem as a mathematical problem, as a Mixed Integer Linear Programming (MILP) program. 
Such a problem consists of an objective function of decision variables, which can be minimized or maximized 
by a solver. This objective function is subject to a set of constraints, which put restrictions on the decision 
variables. These problems and algorithms are well studied and there are software implementations of the 
algorithms available for solving the problem, i.e., finding the optimal composition of variables that minimizes 
our objective.  

The mathematical model of the optimization problem is provided in Appendix B.  

5.3.2.2 Verification and validation 
We show the outcome of our scheduler by implementing the model in the Pyomo [3] library, using the Gurobi 
solver to find the optimal solution [4]. We manually define a sequence of waypoints (in a two-dimensional 
space for visualization) and define the charge rate, charge depletion rate and velocities such that the drone 
must charge a few times during the mission execution. In this example, the minimum battery charge (Bmin) is 
set to 20%. Figure 47 shows the outcome of solving a simple example problem.  The sequence of waypoints 
that the UAV follows is shown in (a), and the resulting path – including the charge locations – in (b). The 
battery charge over time (c), illustrates that the battery never falls below the minimum charge rate.  
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Sequence of waypoints 

 

Optimal path after optimization 

 

(c) Battery profile when following the optimal schedule. The background bars represent the period 
at which the period is charging and the visited charging station (defined by the color). 

Figure 47: Example of the optimal solution for a single drone, following twenty waypoints and four charging 
stations along the way. 

 

5.3.2.3 Verifications and validation 
Similar to the initial model, we manually define a simple problem and find an optimal charge schedule. In this 
case, we define three drones, each circling around a single charging station following four waypoints. Again, 
the (dis)charge rates and velocities are chosen such that the drones must charge at least once. The velocities of 
the three drones are 1, 1.2 and 1 m/s respectively. Figure 48a shows the waypoints, with Figure 48b and Figure 
48c showing the battery profiles of the three drones for a different selection of the parameter. The battery 
profiles illustrate that the charging station is never occupied by multiple drones simultaneously, since drones 
are waiting for another to finish. To minimize the total execution time, the blue drone charges twice shortly. 
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(a) Waypoints for three drones 

 

(b) =0.1 

 

(c) =1 

Figure 48: Example waypoints and solution for a multi-UAV model. (b) and (c) illustrate the impact of which 
causes the charging windows to be ‘pushed away’ from each other at larger values. 

We compare our approach with a naive solution to illustrate our model results in a shorter execution time. In 
this naive approach, we assume each drone to be self-centered and short-sighted. For a fair comparison, the 
naive approach must decide on the same decision variables (i.e., path of waypoints and charging stations, wait 
times at charging stations and charging time at charging station) and is subject to the same constraints (i.e., the 
battery cannot deplete, and each charging station cannot serve more than one drone simultaneously). The naive 
approach is implemented under the following rules: 

1. For each waypoint, a drone evaluates whether it can reach any charging station if it directly moves to 
the next waypoint: 

a. If it can, it will move directly to the next waypoint 

b. If not, it will move to the closest charging station 
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2. If the charging station is occupied, a drone will wait until it is available 

3. A UAV will always fully charge its battery 

We apply both the naive approach and our MILP model to the same use case showing the resulting battery 
profiles from both schedules in Figure 49.  

 

(a) Naive approach 
 

(c) MILP 

Figure 49: Charging schedule for (a) the naive approach and (b) our proposed MILP solution. 

In the naive approach, the third drone must wait for the other two drones to completely complete their charging. 
This problem is circumvented by the MILP schedule, which lets the first and second drone charge twice. The 
mission execution time on both schedules is 19.31 and 15.35 seconds respectively, making the MILP mission 
nearly 4 seconds faster. 

5.3.2.4 Integration with path planning 
Our proposed model can naturally be integrated with the results from Section 5.2. After computing the 
waypoints to visit for a given piece of infrastructure, our approach can be applied to prevent any battery 
depletion. To illustrate this integration, we applied our approach to an example bridge (Leonardo bridge). 
Figure 50 shows the results, with the original computed paths in Figure 50a, the paths including visits to the 
charging station in 4b and the resulting battery profile in Figure 50. Note that the color scheme between Figure 
50c and the other figures does not match. The figures demonstrate that the drones visit the charging station 
one, two and zero times, respectively. 
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(a) Generated waypoints for three drones 
inspecting the bridge 

(b) The flight path including charging 

 

(c) Battery charge over time 

Figure 50: Integration of proposed charging protocol with path planning. 

 

The charging protocol is supported by a few assumptions about the environment in which the inspection 
mission is taking place. The model relies on a simple relationship between the distance between waypoints 
and charging stations  

𝑒𝑛𝑒𝑟𝑔𝑦 െ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ൌ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  ൈ   𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  ൈ   𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 െ 𝑟𝑎𝑡𝑒, 

which is unlikely to accurately represent a real-world scenario, where external factors such as weather 
conditions and obstacles impact the energy consumption. Secondly, solving an optimization problem that 
coordinates all drones in a swarm is done centrally once prior to a mission execution, and does not consider 
these external factors that play a role in real environments. Combined, this indicates that the proposed solution 
does not guarantee that a charging station is occupied by two drones simultaneously when deployed. 
Implementing our proposed solution requires adapting to changes during the mission execution. 

A second limitation of our method is the computation cost involved in solving the model. The mathematical 
model suggests that the number of variables and constraints grow quadratically with the number of drones and 
waypoints in our model. A reasonable problem with multiple drones and tens of waypoints leads to an 
optimization problem of hundreds of thousands of variables and constraints which makes it expensive to solve. 



62 
 

One option to circumvent this limitation is to simplify the problem, by for example sample the number of 
waypoints or to solve the problem for only a subset of the waypoints. Alternatively, approximation methods 
such as genetic algorithms or particle swarm optimization can be employed. However, these  

In this work, we propose a mixed integer linear programing (MILP) model that finds an optimal charging 
schedule for several drones that share a limited number of charging stations. It minimizes the total mission 
execution time, while ensuring that the batteries of the drones do not fully deplete and that each charging 
station does not serve more than one drone simultaneously. Our proposed scheduling model can be naturally 
integrated with path planning methods proposed elsewhere in this deliverable and we show that it outperforms 
compared to a naive scheduling strategy. We aim to alleviate the limitations of our approach in future work, 
by reducing the complexity of the problem and resorting to approximation techniques. 

5.4 Formation Flying 
Within the field of autonomous multi-robot systems, several methods have been studied on how robots can 
organize and adhere to formations. Formation control schemes can typically be divided into centralized or 
distributed control methods [12]. The following subsections introduces design and verification of a distributed 
and a centralized control method, respectively. First, we test a policy-based mechanism based on the boid 
model. Following this we present a centralized formation control mechanism based on the leader-follower 
scheme. This latter formation algorithm is also demonstrated as part of Deliverable D5.3 of the Drones4Safety 
project [19]. 

5.4.1 Policy-based formation control with the boid model 
This study investigates a high-level control method that works in a distributed manner. The proposed method 
combines the boid model and path planning algorithms for the use of autonomous swarms of drones. The 
simulation tool has been created so that configuration space can be generated for a given map for the use of 
the path planning algorithms. To provide a guidance for the swarm we study an integration and a comparison 
of the A* and RRT* path finding algorithms. For verification, a simulator has been created to test the proposed 
control method by evaluating it in its time performance and the number of collisions. It is found that the 
proposed method can be successfully used as a high-level control algorithm for autonomous drones, which can 
be used to perform collision-free swarm control. 

5.4.1.1 The Boid model and its adaptation 
Bio-inspired methods belong to the policy-based as these typically are based on simple rules and may exhibit 
emergent properties such as swarm reconfigurability. Like migratory birds, small fish and insects, a swarm is 
generally defined as a group of behaving entities that together coordinate to produce a significant or desired 
result [20][21]. The attractiveness of these bio-inspired methods rests on the possibility to distribute the control 
mechanism onto many drones. In a distributed control algorithm, the computation is done in each drone 
independently from each other using localized data. 

A bird swarm model, called the boid model, is used to make the drones behave as a swarm and to avoid 
collision with each other. The use of the boid model implements the control algorithm in a distributed manner, 
where the computation of the motion is done individually by the drones. The boid model is a bioinspired model 
that mimics the movements of a flock of birds or a school of fish. The model is founded on three distinct rules: 
separation, cohesion, and alignment (Figure 51). 
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Figure 51: Rules of the boid model. Cohesion ensures boids to be attracted towards the “center of mass'” of 
other boids within the view distance (grey shaded circle). Separation counters the collision of a boid with its 

neighbors. Alignment drives boids to move in a common direction. 

Each boid, which represents a drone, is an object that exists in a geometric 2D plane. It has a view distance, 
which is analogous to the distance in which a bird can observe other birds in the swarm.  Analogously, the 
view distance of a drone corresponds to the sensor range. 

A cohesion rule keeps the boids together. It is the rule that makes the boid move towards the center of other 
boids within the view distance denoted by dvd. This calculation excludes the boids that are out of the visual 
distance. This means practically, if a boid gets far apart from the swarm, they are not able to get back together 
unless they get back within the visibility range. The cohesion rule may be formulated as follows: 

 
where ||...|| is the Euclidean distance and V is the set of boids in the visibility range of the boid of interest 
positioned in x0 with n=|V| being the number of boids in the set. 

The separation rule is ensuring that collisions between the boids are avoided. As two boids get close to each 
other, after some threshold they start moving in the opposite direction. The separation rule may be formulated 
as follows: 

 
We have introduced a minimum distance dmin that ensures boids not to avoid colliding. The distance of the 
visibility range is denoted dvd. 

The alignment rule controls the direction of the motion of the swarm as a whole. A boid looks at the other 
boids within its visibility range and finds the average direction and speed of the swarm. After the average 
velocity is found, the boid of interest aligns itself and adjusts its velocity to fit the swarm. The alignment rule 
may be formulated as follows: 

 

where ẋ is the velocity of a boid, ẋavg being the time average. 

The simple boid model is extended with two additional rules to provide object avoidance and integrate with a 
path planning component. The path guidance rule takes waypoints as input from the path planning algorithm. 
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To avoid obstacles, we introduce a rule analogous to the separation rule based on observed obstacles within 
the view distance. 

 

where xoa >= 0 is the distance to a nearby object. Furthermore, the rule that guides the swarm along a path is 
formulated as: 

 

where xgd is a vector providing guidance towards the next way point.  

All the rules mentioned act as physical forces on the swarm in their retrospective direction weighted by a set 
of weight factors. 

5.4.1.2 Path planning 
A path planning component creates a sequence of waypoints guiding the motion of the drones. Several path 
planning algorithms have been reported in the literature [23].  Among these the A* and the RRT* algorithms 
are most often encountered with UAV path planning. The A* path-search algorithm uses a heuristic function 
h(n) to minimize the cost of reaching the goal yg of the path from any other node. We use the Euclidean distance 
between the current node and the goal i.e., the goal in our work: h(n) = |yg - yn|. In contrast, the Rapidly-
exploring Random Tree Star, denoted as RRT*, is an algorithm designed to search in an area by covering it 
with a space filling tree. RRT is a single-query planner that sample points in the configuration map until a path 
is found although this may not be the optimal path. The RRT algorithm is executed until a path is found. An 
improved version of the RRT algorithm is the RRT* algorithm.  

5.4.1.3 Simulator implementation 
To study the performance of the swarm control based on the boid model, a continuous time simulation was 
built. The boid model and the path planning algorithms are implemented into the drone objects to test the 
proposed control method. The simulator controls the path planning and the boid modules independently.  

To navigate the environment, drones are equipped with a digital map defining the workspace for the drone. 
We create the workspace from orthophotos of the inspection area of interest corrected by using an elevation 
model to adjust actual heights to the 2D plane.  

To transform a workspace into a configuration space, a map is first digitized to mark each pixel if it contains 
an obstacle (coded with “1”) or is free (coded with “0”). A map is further enhanced by creating an artificial 
buffer enlarging the area of obstacles. The artificial buffer provides a certainty that the paths generated will 
not get too close to obstacles. 

For simplicity we have assumed that a drone has a physical size smaller than the size of a single pixel and 
therefore can be represented by a point. The integration has been done by splitting the path planning 
computation for the map in the prepossessing phase and feeding in waypoints into the drones. For the travel 
between the waypoints, the object avoidance features of the boid model have been used. Hence, the waypoints 
guide the swarm in a global scale across the map, while sensor data is used to navigate around obstacles. This 
allows individual drones to not be burdened by the real-time computation of path planning, but rather to follow 
the global path while reacting to their environments. 
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The next step is to create the simulation medium. A discrete continuous time simulator is created to iterate the 
motion of the drones in the environment. The simulator stores the metrics of number of iterations, path lengths, 
number of collisions and the number of drones that reach the goal. The option of viewing the simulation is 
added in this step so that the simulated flight of the swarm can be observed (Figure 52). 

 

Figure 52: Display of the simulator with boids and waypoints marked as pots. The digitized map of the flying 
area is based on actual building and vegetation adding a buffer to keep boids at a safe distance to the 

obstacles. 

 
5.4.1.4 Experiments and results 
The first set of experiments exploits the relationship between the coherence factor and the time it takes for the 
UAV swarm to reach the goal. 

 
(a) No obstacles 

 
(b) Convex obstacles 

 
(c) Minimum distance 

Figure 53: Experiments with time dependence and cohesion and minimum distance. Each data point in the 
graph represents the mean of 20 simulation runs.   

Figure 53a shows the relationship between the cohesion factor and the time it takes to reach the goal measured 
in the number of iterations (epochs). The experiment is done 20 times for each parameter. Each run is counted 
as complete when all the drones reach within the goal node. The time it takes to reach the goal increases with 
the increase of the cohesion factor. Drones that are on the right trajectory pay a lot for the drones that are left 
behind. On the other hand, even though the main swarm is slowed down, single escaped drones tend to recover 
from the departure when the coherence factor is high.  

This graph alone suggests keeping the cohesion factor to a minimum for best time performance, but it is not 
completely true since this will lead the swarm to fly completely separately. In the cases where the cohesion 
factor is approaching 0, the only factor other than the goal motivation factor is the obstacle and drone avoidance 
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factors. Since there is no force to keep the drone back together, the drone avoidance factor shows its effect and 
disbands the swarm in all directions, showing the significance of the coherence factor in the unity of the swarm. 

Figure 53b explores the next step is to check the effect of the cohesion factor on obstacle environments.  For 
this a digitized map portion has been selected that contains convex obstacles. Convex obstacles mean that in 
the path between the start goal and the destination goal, there are no concave “cave-like” shapes that can trap 
the swarm. 

Such geometry has been chosen for this test as the aim of this experiment is not to see the effectiveness of the 
swarm to avoid concave holes, but rather the time difference of the swarm with changing cohesion 
factor.  Since the obstacles are difficult to get around, the A* path planning algorithm is added to allow the 
swarm to go through the obstacles.  

The minimum distance parameter, which is the parameter which designates the minimum distance allowed 
between the drone, has a similar effect as the coherence factor. The minimum distance parameter is similar to 
the coherence factor in the sense that it makes the swarm less flexible when the minimum distance is increased, 
as seen in an example shown in Figure 53c.  

On the other hand, the overall surface area that is covered by the swarm is significantly increased. This is an 
important fact to consider, as it may be useful in specific situations such as inspection for large areas, such as 
farms. 

Reaching the Goal: A shortcoming of the boid model is that drones are not guaranteed to reach the destination 
goal. This is due to the forces that act on the drones may counter the forward motion in the path. One of the 
main contributing factors of drones to miss reaching the goal is the cohesion factor. Experimentation shows 
that increasing the cohesion factor reduces the number of drones that reach the goal. This effect can be seen in 
Figure 54a: 

a)

  

b) 

 
Figure 54: The number of drones that reach the goal for the path created by A* and RRT* algorithms.  

An important consideration is that after the cohesion factor obtains the value of 1, the swarm becomes 
immobile as this factor out-weights all the other forces driving the motion of the swarm. 

The second most influential parameter on the number of drones reaching the goal is the minimum drone 
distance parameter. This parameter reduces the density of the swarm as the parameter is increased. A high 
minimum distance means that the drones cannot get close to each other, making the overall size of the swarm 
larger. This makes it difficult for the swarm to pass through narrow free space. 
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Figure 54b shows the number of drones that reached the goal for going around a building in the map. It can be 
seen in the figure above that the number of drones that reach the goal node significantly reduces as the 
minimum drone distance increases. It is important to note that this decrease is caused due to the tight passage 
and that this effect is not expected in an open field. 

In this section, we report on the design and evaluation of a high-level swarm control algorithm based on the 
boid model. The method is distributed on individual drones to make decisions based on local sensory input. 
Our proposed control method extends the boid model with path planning and obstacle avoidance. As a result, 
it uses five simple rules to both avoid all obstacles and follow a path. The control method is tested in a 
continuous time simulator that has been created for this research. The combination of the path planning as an 
input to the boid model proved to be successful, as all the experimentation done uses this algorithm. It has 
been concluded that the created algorithm is a promising approach for controlling autonomous swarms. A 
shortcoming of the proposed control method in its current form is that it does not handle concave obstacles in 
a robust manner. 

5.4.2 Leader follower scheme 
The formation flying function is designed using a leader-follower scheme. Specifically, the leader drone 
receives the mission description (a mission file) and mission control commands (service calls) from the ground 
control station. A mission file consists of a list of waypoints for both the leader drone and follower drones. 
These waypoints are pre-generated according to the mission. Then, the leader drone coordinates mission 
progress with the follower drone by controlling the distribution of the mission element, i.e., waypoints. At last 
of each iteration, the waypoint is executed by each drone using onboard position control. Figure 55 shows the 
communication protocol to achieve a formation flying.  
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Figure 55: Communication protocol for formation flying. 

The formation flying function is designed using a leader-follower scheme. Specifically, the leader drone 
receives the mission description (a mission file) and mission control commands (service calls) from the ground 
control station. A mission file consists of a list of waypoints for both the leader drone and follower drones. 
These waypoints are pre-generated according to the mission. Then, the leader drone coordinates mission 
progress with the follower drone by controlling the distribution of the mission element, i.e., waypoints. At last 
of each iteration, the waypoint is executed by each drone using onboard position control. 

Formation flying requires communication between drones. The communication system is established based on 
a WiFi network with an access point. The following figure shows that the network connects drones and a 
ground control station (Figure 56). 
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a) 
 

 

b) 

 
 

Figure 56: a) Communication setup for formation flying, b) Photo of team effort for the validation of the 
formation flying at the HC Andersen Airport. 

  
A demonstration of formation flying with two drones in the outdoor test environment is given in deliverable 
D5.3 [19]. The picture in Figure 5 on page 13 show two drones flying in formation. 

6  Towards BVLOS Swarm Operation 
According to current EU regulation Beyond Visual Line of Sight (BVLOS) operations are formally allowed 
within the Specific/Certified category (according to the level of risk). The main operative constraints are 
related to the time and effort required for authorizations and UAS/ pilots/operator qualifications.  

The new EASA drone Regulations aims to standardize the different regulations of the Member States and to 
regulate the civil use of drones regardless of their size or weight. The new European regulatory framework 
applies to all UASs, whether autonomous or remotely piloted, and regardless of their mass or use. Current 
regulations in the open drone category demands to always keep the UAS in the line of sight. The ‘First Person 
View’ and ‘Follow-me’ flight modes can be considered under certain conditions as VLOS [31]. However, it is 
expected that a deregulation will gradually occur and BVLOS operation will be practically possible in the 
future starting with single drone operation and later advancing to swarm operation under in controlled settings.  

This section documents steps taken as part of effort in WP5 to support BVLOS operation in the future. In this 
regard, focus has been on data support and technology evaluations. 

6.1 Information service for BVLOS operation 
To support the BVLOS operation of the autonomous drone swarm, we developed a cloud platform for mission 
management where information about the global flight environment is stored as well as information collected 
during the flight. Drones exchange information with cloud services through HTTPS protocol and services are 
connected to databases. Databases store information about infrastructure locations, restricted areas, planned 
and executed missions, telemetry received from the drones, and images collected during the missions. 
Restricted areas are stored within the No-fly service in JSON format, visualized on the web interface, and can 
be transmitted to the swarm upon request. Infrastructure locations are stored in databases corresponding to 
Towers, Bridges, and Railways services. The data is used for building a graph and calculating inspection paths 
and transmitted to the drones in the form of a mission plan. Detailed mission plans are stored in a separate 
database, providing routes and specific tasks to the drones. Drones report their status during the mission and 
data is stored in the Drone Log database. Images received from the inspection are stored in Object Storage. 
The following subsections describe database development and organization in detail. 
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6.1.1 Railways, Towers, and Bridges Database 
MongoDB is a source-available cross-platform document-oriented database program. Classified as a NoSQL 
database program, MongoDB uses JSON-like documents with optional schemas. We use it to store 
infrastructure data in JSON-like documents which are easily queried. MongoDB supports geo-queries when 
the database contains geographic locations. The user can query elements within a specified distance or range, 
which is very useful in our case for determining which nodes in the graph are neighboring nodes. Services that 
use MongoDB are Towers, Railways, and Bridges. The data is represented with models shown in Table 2. 
Data models determine a form the data is stored in the database. The database contains information about 
power towers, lines, bridges, and railway’s locations and specifications. Towers are defined as “nodes” and 
the data model contains location. Lines are defined as “ways” and contain an array with unique identifiers for 
nodes. Nodes’ location is stored with the same data model used for towers. Bridges' locations are stored as 
ways containing an array of nodes forming the polygon around the bridge. Each node contains geolocation 
with latitude and longitude. Railways are stored using the same data model used for lines.  

Table 2: Data models as stored in the database 

Towers Lines Bridges Railways 

 
_id: ObjectId 
type: “node” 
id: tower_id 

location: Object 
 
  

 
_id: ObjectId 
type: “way” 
id: line_id 

nodes: Array 
tags: Object 

 
 

_id: ObjectId 
type: “node” 
id: node_id 

location: Object 
  

 
_id: ObjectId 
type: “way” 
id: bridge_id 
nodes: Array 
tags: Object 

 
 

_id: ObjectId 
type: “node” 
id: node_id 
lat: latitude 

lon: longitude  

 
_id: ObjectId 
type: “way” 

id: railway_id 
nodes: Array 
tags: Object 

 
 

_id: ObjectId 
type: “node” 
id: node_id 

location: Object 
  

 

6.1.2 Missions and Drone Log Database 
PostgreSQL, also known as Postgres, is a free and open-source relational database management system 
emphasizing extensibility and SQL compliance. In Missions and Drone Log services, we created relations 
using PostgreSQL because this database will experience user queries and complex join queries for which 
NoSQL databases are not well adapted.  

Data needs to be transferred between services in the cloud, to the drone, and from the drone to the cloud. 
Database relations specify mission data (including inspection tasks), telemetry data, and inspection results 
data. Therefore, we designed databases in Missions and Drone Log services to create global data space. Figure 
57 shows relations implemented in these services and relationships between them. Relations contain attributes 
described as:  

 Mission relation – the relation contains mission data, like mission name, the status of the mission, 
swarm participating in the mission, routes associated with it, geofence regions where the flight is 
permitted, and time information.   

 Task relation – the relation specifies tasks given to the drone. It describes the inspection type, location 
of task execution, and the drone the task has been delegated. It stores specifications describing which 
sensors to use e.g., RGB camera, frequency of data acquisition, speed of the drone during data 
acquisition, etc.   
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 Result relation – the relation stores inspection results and related data. It contains time data when the 
results are received, the location where the result was obtained, the fault description, and the image 
UID associated with the faulty image.  

 Telemetry relation – the relation stores drone telemetry data like position, orientation, velocity, speed 
from different sensors. It also stores the drone’s status, battery status, and onboard computer status.  

 Swarm relation – the relation stores swarm identifiers for swarms participating in the mission.   

 Drone relation – the relation stores drones participating in the mission.    

 
Figure 57: Database diagram. 

 

6.1.3 Object Storage Database 
The Object Storage database is a MongoDB database storing images in a binary format. The database stores 
images received from the drones with corresponding metadata. MongoDB enables geo-querying which 
facilitates querying based on locations where the images were taken. For the proof-of-concept application, we 
use cloud storage offered by MongoDB similarly to databases storing power towers, power lines, bridges, and 
railways. The database contains a collection named “Image” storing useful data related to each image received. 
The data model is shown in Table 3. The data model determines the form in which each image is stored in the 
database. Object ID is a unique identifier automatically set by MongoDB when inputting a new entry. Image 
ID is an image unique identifier enabling search for a specific image. Mission ID stores the unique identifier 
of the mission during which the image was captured. Drone ID stores the unique identifier of the drone which 
captured the image. By storing the latitude and longitude of the location where the image was captured we 
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enabled geo-querying and search for the images taken near the location chosen on the map. This design enables 
the user to search for images collected in previous autonomous missions either by the unique identifiers or by 
geolocation.  

Table 3: Image data as stored in the Object Storage. 

Image 

 
_id: ObjectId 
img_id: int 

mission_id: int 
drone_id: int 
lat: latitude 

lon: longitude 
metadata: Object 

img: Binary Object 

 

7 Conclusions 
This deliverable summarizes test and validation activities of WP5. Activities address the communication 
needed to support the multi-drone system as well as the key function, algorithms, and protocols to offer the 
needed autonomy and control of an inspection mission. We have presented results from using LoRa radio 
communication for drone-to-ground communication, drone-to-drone communication using ROS over WiFi 
and we have characterized and assessed 5G mobile communication as a potential technology for the drone-to-
cloud communication. 

Test and validation of algorithms demonstrates the working of key methods needed in the autonomous 
inspection mission including global motion path planning, inspection path planning, policy-based motion 
control, secure group management and a protocol for drone charging.  
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Appendix A: Group Management Protocol Message specification 
 

This appendix details the message structure for the Secure group management protocol introduced in Section 
5.1. 

A.1 Message structure 
This section describes the structure of the messages that are exchanged during the previously described 
activities and the cause of state changes in Figure 29. To visualize the cryptographic keys for a particular 
message, we rely on the following color scheme to indicate the fields that are covered by the following keys: 

 

Unencrypted UAV public key Current group key Former group key Root key Controller public  
key 

 

All messages have a group key version and message type field. The former allows the receiver to know what 
group key to use for decryption operations (or for a member to identify it needs to synchronize with the 
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controller), and the message type indicates to the receiver how to interpret the remaining data in the message. 
Both fields are unencrypted, so that no decryption is required to read the message. 

Version MessageType <Data> 

 

Controller broadcast 
The controller broadcast message is used to advertise the unique ID of the controller and its public key. The 
identifier differentiates this broadcast from broadcast messages from nearby other group controllers, and the 
public key is used in further communication to prevent spoofing attacks on the controller. A nonce prevents 
replay attacks and a MIC ensures the integrity of the messages. 

Covered by MIC 
 

ControllerID ControllerPubKey ControllerNonce MIC 

 

Note: for this message, the version field can be ignored by the receiver, as it is not part of a group yet. 

Join request 
A join request is sent from a non-member drone to a controller. The message includes both the identifier of 
the controller to join, and the identifier of the drone (or device) that wishes to become a group member. To 
prevent a replay attack, a nonce is added and the public key of the member is added that allows the controller 
to send secure messages to the drone. A MIC is computed over the full message using the root key, preventing 
tampering. 

Covered by MIC 
 

ControllerID DeviceID DeviceNonce DevicePubKey MIC 

 

A controller receiving a join request can verify the validity of the message (1) verifying the MIC with the root 
key, (2) checking if the controller ID in the message matches its own identifier and (3) verifying that it has 
never received the nonce for the given member before.  

Note: for this message, the version field can be ignored by the receiver, as it is not part of a group yet. 

Join accept 
After successfully verifying a join accept, a controller responds by sending an accept message. This message 
contains the identifier of the controller and the swarm. The controller assigns a swarm-wide address to the 
member that allows the member to address other UAVs in the swarm across groups. The current group key 
version and the group key itself is embedded in the messages, as well as a nonce (to prevent replay attacks). A 
MIC computed over the message ensures integrity. The full message is encrypted using the private key of the 
UAV. The root key cannot be used for encryption, since this would expose the group key to non-member 
drones within communication range. 
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Encrypted 
 

Covered by MIC 
 

ControllerID SwarmID SwarmAddr Version GroupKey ControllerNonce MIC 

 

Note: for this message, the version field can be ignored by the receiver, as it is not part of a group yet. 

Leave request 
The leave request indicates a drone wishes to leave a group. As such, it indicates the identifier of the controller 
whose group to leave, and the member’s address within the swarm. An acknowledgement field indicates 
whether the drone expects an acknowledgement from the controller or not. Acknowledgement is relevant for 
a use case in which a drone is executing a task and the task must be re-assigned by the controller. In this case, 
the member needs confirmation that its task will be reassigned before leaving. The message contains a nonce 
against replay attacks and a MIC to guarantee integrity. This message is encrypted using the current group key. 

Encrypted 
 

Covered by MIC 
 

ControllerID SwarmAddr ACK/NAC DeviceNonce MIC 

 

Leave accept 
When a controller receives a leave request that requires an acknowledgement, it sends a leave message. This 
message contains the controller’s ID and the address of the member which wishes to leave. The message 
contains a nonce and is digitally signed by the controller using its private key to ensure only controllers can 
accept members leaving (and not other drones in the group). 

Encrypted 
 

Covered by SIG 
 

ControllerID SwarmAddr ControllerNonce SIG 

 

Group key update 
Updates of the group key are broadcasted by the controller in case of group membership changes. This message 
contains the identifiers of the controller, the new key of the group and a nonce. The message is encrypted using 
the current group key to maintain the secrecy of the new group key within current group members and the 
message is signed by the controller’s private key to ensure only the controller can update the group key. 

An important note is that by encrypting this message with the current group key, the forward secrecy 
requirement is broken; a member that just left the group (and as such should not have access to more recent 
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group keys) within the broadcast range of the group key update can decrypt it and obtain the new group key. 
This process can be repeated indefinitely, but relies on the former group member to intercept all group key 
updates. 

Encrypted 
 

Covered by SIG 
 

ControllerID GroupKey ControllerNonce SIG 

 

Note: after broadcasting this message, the controller increments the version number of the group key in 
subsequent messages and so do all member dronesthat receive the update. 

Synchronization request 
A member can update to the most recent version of a group key by sending a synchronization request. This 
request includes the identifier of the controller and the member who sends the request. A nonce prevents replay 
attacks, a MIC prevents tampering and the message is encrypted for confidentiality. An older group key is used 
for both the MIC and the encryption. 

 

Encrypted 
 

Covered by MIC 
 

ControllerID SwarmAddr DeviceNonce MIC 

 

Synchronization accept 
As response to a synchronization request no more than one group key generation behind, an accept message 
should be sent. The message contains the identifier of the controller and the member, and the new group key. 
Since the member is out of sync, it will also be notified of the current version of the group key. The message 
is encrypted with the same (former) group key that was used to encrypt the synchronization request to provide 
confidentiality. Furthermore, the message is signed by the controller’s public key. 

 

Encrypted 
 

Covered by SIG 
 

ControllerID SwarmAddr GroupKey Version ControllerNonce SIG 
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A.2  Field descriptions 
The fields (and their purpose) that are used in the messages are described here in more detail. 

Version is a field used to indicate what iteration the swarm is on, which also indicates what iteration of the 
group key messages is encrypted with. 

Message type is a field used to identify the type of message being sent. It is used by the protocol to determine 
how to handle the data in the message. 

MIC is an integrity field appended to all messages to ensure that messages are sent by a member of the swarm 
and that the content of a message has not been altered. The MIC is created and validated by a symmetric key. 

SIG is a digital signature added to the message to ensure that the message is from the controller. The digital 
signature is created and validated by a private and public key respecitvely. 

ControllerID is a globally unique identifier that uniquely identifies an entity able to act as controller. 

ControllerPubKey is the public key of the controller and is used by the drones in the swarm to verify the 
signature in messages from the controller 

ControllerNonce is a field used by the drones to protect against replay attacks on messages from the controller 

DeviceID is a globally unique device identifier which uniquely identifies a drone. 

DeviceNonce is a field generated by the drones and is used to protect against replay attacks. The field is used 
by the controller to check that the DeviceNonce has not been used by the drone before. The value can be 
random or incremental depending on hardware capabilities and constraints. 

DevicePubKey is the public key of the drone that wants to join the swarm and is used by the controller to 
encrypt the response to the join request. 

SwarmID is a field identifying the swarm which the drones will belong to once the join request has been 
accepted. 

SwarmAddr is a device address assigned to drones by the controller to identify the drones within the current 
swarm. 

GroupKey is the group key that members of the swarm should use for encryption and decryption of messages 
within the swarm. 

ACK/NAC is a field used to indicate if a drone needs to wait for an acknowledgement before leaving the 
swarm or if it can just leave immediately. The purpose of this field is to ensure better task allocation. 

 

 

 

Appendix B: Mathematical model of charging optimization problem 
The charging protocol described in Section 5 is based on the solution of a MILP problem.  
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B.1 Notations 
Before mathematically defining our model’s objective and constraints, we introduce the notation used from 
here on in Table 4 (constants) and Table 5 (indices). The value of the constants depends on the specific problem 
that the model is applied to. For instance, for a (relatively) short inspection of ten waypoints with seven drones 
and a single charging station, the set of constants is set to (10, 7 ,1). 

Table 4: Constants used in the model, unique for each 

Constant Description 

Nd Number of drones 

Nw Number of waypoints per drone 

Ns Number of charging stations 

 

Table 5: Indices of the model. 

Index Description 

d drone 

s charging station ({1, ... , Ns}) 

w waypoint ({1, ... , Nw}) 

ws Waypoint the precedes another waypoint  
({1, ... , Nw-1}) 

n node in path ({1, ... , Ns1}) 

 

Furthermore, each problem is parameterized by a number of values denoted in Table 3. 
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Table 6: Parameters used by the model. 

Parameter Description 

 

distance from waypoint ws to its path node n for drone d 

 

distance from path node n to the next waypoint ws for drone d 

 

battery charging rate for drone d 

 

battery depletion rate for drone d 

 vd velocity of drone d 

 

starting battery charge of drone d (%) 

 

minimum allowed battery charge (%) 

 

maximum allowed battery charge (%) 

 

The distance matrices 𝐷ேand 𝐷ௐrepresent the Euclidean distances between the (x,y,z) coordinates of the 
waypoints and charging stations, which must therefore be provided as an input to the model beforehand.  

Based on these parameters, we can compute a maximum charge duration (in seconds) for drone d as  

. 

The model variables are shown in Table 4, where there is a distinction between control and state variables [2]. 
The former are independent variables where the latter are dependent on the value of the control variables. 

Table 7: Decision variables of the model. 

Variable Type Description 

 

Control 1 - if drone d moves via path node n from waypoint ws 
0 - otherwise 
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waiting duration of drone d after waypoint ws 

 

charge duration of drone d after waypoint ws 

 

State 
 

battery charge of drone d when arriving at waypoint w 

 

battery charge of drone d when arriving at next path node after waypoint ws 

 

battery charge of drone d when after charging at next path node after waypoint ws 

 

B.2 Objectives and constraints 
Using the definitions of tables above, we introduce the objective of the model in several steps. First, we express 
the time it takes to move from drone d to its next waypoint ws as follows: 

 

In essence, the equation divides the distance (in the summation part) by the velocity of the drone. For each 
drone, we can express the total execution time of the mission by summing over time taken at all preceding 
waypoints: 

 

The final objective is to minimize the total execution time across all drones: 

 

The objective is subject to the constraints defined in this section. 

 



82 
 

The first equation specifies that a drone d must follow precisely one path node after each waypoint ws. The 
battery charge at each point of the mission execution is calculated by the following equations: 

 

 

 

 

 

Given constraints 2-5, each drone can be charging (or wait) when the drone moves directly between two 
consecutive waypoints, without visiting a charging station. To prevent this from happening, we constraint the 
charging and waiting duration as follows: 

 

 

We further constrain the range of the decision variables: 
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The equations above prevent the drone batteries from depleting as well as preventing overcharging of the 
battery. 

Simultaneous charge prevention 
The previously defined equations work well for a single drone but cannot be applied to a multi-drone situation 
without modifications. The model does not prevent multiple drones from charging at the same charging station 
simultaneously. We address this by introducing a new set of constraints. The underlying idea is that each drone 
has a time window at which they charge after each of their waypoints, and that time windows of two drones 
are not allowed to overlap when the respective drones occupy the same charging station. 

First, we define the start and end time of the time windows, referred to as Ts and Te respectively: 

 

 

 

Where 𝑤 ∈ ሼ1, … ,𝑤௦ െ 1ሽ. In Eq. 14, the first summation term sums the execution time of all previous 
waypoints, and the second term represents the time taken from moving from the current waypoint to the start 
of the charging at the next waypoint. The end of the time window adds the charging time to the start of the 
window. 

Furthermore, we introduce a binary variable Od,d', ws, ws' that expresses whether drone d and d' charge at the 
same charging station after their respective waypoints ws and ws'. 

 

Note that this equation is nonlinear and in practice is converted into a series of linear equations, keeping the 
problem a MILP. For two windows to not overlap, the starting time of both drone d and d' is not allowed to 
fall inside the time window of the other. This is covered by the following constraints: 
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For a sufficiently large M. The equations above forces drone d' to start charging after d ends and it forces drone 
d' to start charging before d starts. The newly introduced binary variable ensures that either of the equations 
above must hold. The non-zero ensures that 1) two windows cannot start exactly at the same time and 2) that 
time windows are separated by a buffer time. Whenever two drones do not charge at the same time (i.e., the 
binary overlap variable O is zero), the M (1 - O) terms in the equations ensure both constraints are non-binding 
and therefore that windows are allowed to overlap. 


